2025年启东中学作业本九年级数学上册苏科版宿迁专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年启东中学作业本九年级数学上册苏科版宿迁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年启东中学作业本九年级数学上册苏科版宿迁专版》

7.(2023·杭州)如图,在$\odot O$中,半径OA,OB互相垂直,点C在劣弧AB上.若$∠ABC= 19^{\circ }$,则$∠BAC=$(
D
)

A.$23^{\circ }$
B.$24^{\circ }$
C.$25^{\circ }$
D.$26^{\circ }$
答案: D
8.如图,正方形ABCD内接于$\odot O$,点P在$\widehat {AB}$上,则$∠BPC$的度数为(
B
)
A.$30^{\circ }$
B.$45^{\circ }$
C.$60^{\circ }$
D.$90^{\circ }$
答案: B
9.如图,A,B,C是半径为1的$\odot O$上的三个点,若$AB= \sqrt {2},∠CAB= 30^{\circ }$,则$∠ABC$的度数为(
C
)

A.$95^{\circ }$
B.$100^{\circ }$
C.$105^{\circ }$
D.$110^{\circ }$
答案: C
10.在半径等于4 cm的圆内有长为$4\sqrt {3}cm$的弦,则此弦所对的圆周角的度数为
$60^{\circ }$或$120^{\circ }$
.
答案: $60^{\circ }$或$120^{\circ }$
11.(2023·武汉)如图,OA,OB,OC都是$\odot O$的半径,$∠ACB= 2∠BAC.$
(1)求证:$∠AOB= 2∠BOC;$
(2)若$AB= 4,BC= \sqrt {5}$,求$\odot O$的半径.
答案:

(1)证明:$\because ∠ACB=\frac {1}{2}∠AOB,∠BAC=\frac {1}{2}∠BOC,∠ACB=2∠BAC,\therefore ∠AOB=2∠BOC;$
(2)解:如答图,过点O作半径$OD⊥AB$于点E,连接BD,
  $\therefore AE=BE,∠DOB=\frac {1}{2}∠AOB,$
 又$\because ∠AOB=2∠BOC,$
  $\therefore ∠DOB=∠BOC,\therefore BD=BC;$
  $\because AB=4,BC=\sqrt {5},\therefore BE=2,DB=\sqrt {5}.$
 在$Rt△BDE$中,$∠DEB=90^{\circ },$
  $\therefore DE=\sqrt {BD^{2}-BE^{2}}=1,$
 在$Rt△BOE$中,$∠OEB=90^{\circ },OB^{2}=(OB - 1)^{2}+2^{2}$,解得$OB=\frac {5}{2}$,即$\odot O$的半径是$\frac {5}{2}$.
        第11题答图
12.如图,已知点A,B,C为$\odot O$上的三个点,且$\triangle ABC$为等边三角形,P为$\widehat {BC}$上一点.求证:$PA= PB+PC.$
答案:
证明:如答图,在PA上截取$PD = PB$,连接BD.
         第12题答图
  $\because △ABC$是等边三角形,
$\therefore ∠ABC = ∠ACB = 60^{\circ },AB = BC,$
 $\therefore ∠BPA = ∠ACB = 60^{\circ },∠APC = ∠ABC = 60^{\circ },$
 $\therefore ∠BPC = 120^{\circ }.$
 又$\because PD = PB,\therefore △PBD$是等边三角形,
 $\therefore ∠BDP = 60^{\circ },BD = PB,\therefore ∠BDA = 120^{\circ }.$
 又$\because ∠BAP = ∠BCP,$
 $\therefore △ABD\cong △CBP(AAS),$
 $\therefore AD = PC,\therefore PA = PD + AD = PB + PC.$
13.如图,$\odot O$中两条互相垂直的弦AB,CD交于点P,AB经过点O,E是AC的中点,连接OE,EP,延长EP交BD于点F.
(1)若$AB= 10,OE= \sqrt {10}$,求AC的长;
(2)求证:$EF⊥BD.$
答案:
(1)解:$\because E$是$AC$的中点,
 $\therefore OE⊥AC,AC = 2AE,$
 $\because AB = 10,\therefore OA=\frac {1}{2}AB = 5,$
 在$Rt△AOE$中,$OE = \sqrt{10},$
 $\therefore AE=\sqrt{OA^{2}-OE^{2}}=\sqrt{5^{2}-(\sqrt{10})^{2}}=\sqrt{15}$
 $\therefore AC = 2AE = 2\sqrt{15},\therefore AC$的长为$2\sqrt{15}$
(2)证明:$\because AB⊥CD,\therefore ∠APC = ∠BPD = 90^{\circ },$
 $\therefore ∠DPF + ∠BPF = 90^{\circ },$
 $\because E$是$AC$的中点,
 $\therefore EP = EC=\frac {1}{2}AC,\therefore ∠EPC = ∠C;$
 $\because ∠EPC = ∠DPF,∠B = ∠C,\therefore ∠DPF = ∠B,$
 $\therefore ∠B + ∠BPF = 90^{\circ },$
 $\therefore ∠BFP = 180^{\circ }-(∠B + ∠BPF)= 90^{\circ },\therefore EF⊥BD.$

查看更多完整答案,请扫码查看

关闭