第131页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
16. (6分)如图,$\triangle ABC$的边$BC$上的高为$AF$,中线为$AD$,$AC$边上的高为$BG$,已知$AF = 6$,$BD = 10$,$BG = 5$.
(1)求$\triangle ABC$的面积;
(2)求$AC$的长.

(1)求$\triangle ABC$的面积;
(2)求$AC$的长.
答案:
16.解:
(1)
∵△ABC的边BC上的高为AF,中线为AD,
AF = 6,BD = 10,
∴BC = 2BD = 20,
∴S△ABC = $\frac{1}{2}$BC·AF = $\frac{1}{2}$×20×6 = 60;
(2)
∵S△ABC = $\frac{1}{2}$BC·AF = 60,且BG = 5,
∴AC = 24.
(1)
∵△ABC的边BC上的高为AF,中线为AD,
AF = 6,BD = 10,
∴BC = 2BD = 20,
∴S△ABC = $\frac{1}{2}$BC·AF = $\frac{1}{2}$×20×6 = 60;
(2)
∵S△ABC = $\frac{1}{2}$BC·AF = 60,且BG = 5,
∴AC = 24.
17. (6分)如图,在$\triangle ABC$中,$\angle A = \frac{1}{2}\angle B = \frac{1}{3}\angle ACB$,$CD$是$\triangle ABC$的高,$CE$是$\angle ACB$的角平分线,求$\angle DCE$的度数.

答案:
17.解:
∵∠A = $\frac{1}{2}$∠B = $\frac{1}{3}$∠ACB,
∴∠B = 2∠A,∠ACB = 3∠A,
∵∠A + ∠B + ∠ACB = 180°,
∴∠A + 2∠A + 3∠A = 180°,
解得∠A = 30°,
∴∠ACB = 90°,
∵CD是△ABC的高,
∴∠ACD = 90° - 30° = 60°,
∵CE是∠ACB的角平分线,
∴∠ACE = $\frac{1}{2}$×90° = 45°,
∴∠DCE = ∠ACD - ∠ACE = 60° - 45° = 15°.
∵∠A = $\frac{1}{2}$∠B = $\frac{1}{3}$∠ACB,
∴∠B = 2∠A,∠ACB = 3∠A,
∵∠A + ∠B + ∠ACB = 180°,
∴∠A + 2∠A + 3∠A = 180°,
解得∠A = 30°,
∴∠ACB = 90°,
∵CD是△ABC的高,
∴∠ACD = 90° - 30° = 60°,
∵CE是∠ACB的角平分线,
∴∠ACE = $\frac{1}{2}$×90° = 45°,
∴∠DCE = ∠ACD - ∠ACE = 60° - 45° = 15°.
18. (7分)如图,在$\triangle ABC$中,$\angle ABD = 24^{\circ}$,$\angle A = 45^{\circ}$,$\angle ACE = 12^{\circ}$.
(1)求$\angle BFC$的度数;
(2)若$\angle ABC = 90^{\circ}$,求证:$\angle BCF = \frac{1}{2}\angle CBF$.

(1)求$\angle BFC$的度数;
(2)若$\angle ABC = 90^{\circ}$,求证:$\angle BCF = \frac{1}{2}\angle CBF$.
答案:
18.
(1)解:
∵∠ABD = 24°,∠A = 45°,
∴∠BDC = ∠A + ∠ABD = 45° + 24° = 69°,
又
∵∠ACE = 12°,
∴∠BFC = ∠BDC + ∠ACE = 69° + 12° = 81°;
(2)证明:
∵∠ABC = 90°,∠ABD = 24°,
∴∠DBC = ∠ABC - ∠ABD = 90° - 24° = 66°,
∵∠A = 45°,
∴∠ACB = 180° - ∠A - ∠ABC = 180° - 45° - 90° = 45°,
又
∵∠ACE = 12°,
∴∠BCF = ∠ACB - ∠ACE = 45° - 12° = 33°,
∴∠BCF = $\frac{1}{2}$∠DBC,即∠BCF = $\frac{1}{2}$∠CBF.
(1)解:
∵∠ABD = 24°,∠A = 45°,
∴∠BDC = ∠A + ∠ABD = 45° + 24° = 69°,
又
∵∠ACE = 12°,
∴∠BFC = ∠BDC + ∠ACE = 69° + 12° = 81°;
(2)证明:
∵∠ABC = 90°,∠ABD = 24°,
∴∠DBC = ∠ABC - ∠ABD = 90° - 24° = 66°,
∵∠A = 45°,
∴∠ACB = 180° - ∠A - ∠ABC = 180° - 45° - 90° = 45°,
又
∵∠ACE = 12°,
∴∠BCF = ∠ACB - ∠ACE = 45° - 12° = 33°,
∴∠BCF = $\frac{1}{2}$∠DBC,即∠BCF = $\frac{1}{2}$∠CBF.
19. (7分)在$\triangle ABC$中,$AB = AC$,$DB$为$\triangle ABC$的中线,且$BD$将$\triangle ABC$周长分为9 cm与15 cm两部分,求三角形各边长.
答案:
19.解:根据题意画出图形,如图,
设等腰三角形的腰长AB = AC = 2x,BC = y,
∵BD是腰上的中线,
∴AD = DC = x,
若AB + AD的长为15cm,则2x + x = 15,解得x = 5,
则x + y = 9,即5 + y = 9,解得y = 4;
若AB + AD的长为9cm,则2x + x = 9,解得x = 3,
则x + y = 15,即3 + y = 15,解得y = 12,
6 + 6 = 12,三角形不存在,
所以等腰三角形的腰长为10cm,底边长为4cm.
19.解:根据题意画出图形,如图,
设等腰三角形的腰长AB = AC = 2x,BC = y,
∵BD是腰上的中线,
∴AD = DC = x,
若AB + AD的长为15cm,则2x + x = 15,解得x = 5,
则x + y = 9,即5 + y = 9,解得y = 4;
若AB + AD的长为9cm,则2x + x = 9,解得x = 3,
则x + y = 15,即3 + y = 15,解得y = 12,
6 + 6 = 12,三角形不存在,
所以等腰三角形的腰长为10cm,底边长为4cm.
20. (7分)如图,在$\triangle ABC$中,$\angle AGF = \angle ABC$,$\angle 1 + \angle 2 = 180^{\circ}$.
(1)求证:$DE // BF$;
(2)若$DE \perp AC$,$\angle 2 = 140^{\circ}$,求$\angle AFG$的度数.

(1)求证:$DE // BF$;
(2)若$DE \perp AC$,$\angle 2 = 140^{\circ}$,求$\angle AFG$的度数.
答案:
20.解:
(1)证明:
∵∠AGF = ∠ABC,
∴GF//BC,
∴∠1 = ∠CBF,
∵∠1 + ∠2 = 180°,
∴∠CBF + ∠2 = 180°,
∴BF//DE;
(2)
∵BF//DE,DE⊥AC,
∴BF⊥AC,
∵∠1 + ∠2 = 180°,∠2 = 140°,
∴∠1 = 40°,
∴∠AFG = 90° - 40° = 50°.
(1)证明:
∵∠AGF = ∠ABC,
∴GF//BC,
∴∠1 = ∠CBF,
∵∠1 + ∠2 = 180°,
∴∠CBF + ∠2 = 180°,
∴BF//DE;
(2)
∵BF//DE,DE⊥AC,
∴BF⊥AC,
∵∠1 + ∠2 = 180°,∠2 = 140°,
∴∠1 = 40°,
∴∠AFG = 90° - 40° = 50°.
查看更多完整答案,请扫码查看