2025年热搜题高中数学必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年热搜题高中数学必修第二册人教版》

8. [2024·温州中学月考]如图所示,该图由三个全等的$\triangle BAD$,$\triangle ACF$,$\triangle CBE$构成,其中$\triangle DEF$和$\triangle ABC$都为等边三角形.若$DF=2$,$\angle DAB=\frac{\pi}{12}$,则$AB=$
$\sqrt{6} + \sqrt{2}$
.
答案: 8.$\sqrt{6} + \sqrt{2}$ [解析]因为$\triangle ABD \cong \triangle CAF$,所以$AF = BD$.设$AF = x$,在$\triangle ABD$中,$\angle ADB = \frac{2\pi}{3}$,$\angle BAD = \frac{\pi}{12}$,则$\angle ABD = \frac{\pi}{4}$,$\sin\angle BAD = \sin\frac{\pi}{12}=\sin(\frac{\pi}{3} - \frac{\pi}{4})=\sin\frac{\pi}{3}\cos\frac{\pi}{4}-\cos\frac{\pi}{3}\sin\frac{\pi}{4}=\frac{\sqrt{6} - \sqrt{2}}{4}$.由正弦定理得$\frac{BD}{\sin\frac{\pi}{12}}=\frac{AD}{\sin\frac{\pi}{4}}$,即$\frac{x}{\frac{\sqrt{6} - \sqrt{2}}{4}}=\frac{x + 2}{\frac{\sqrt{2}}{2}}$,解得$BD = AF = \frac{2\sqrt{3}}{3}$.由正弦定理得$\frac{BD}{\sin\frac{\pi}{12}}=\frac{AB}{\sin\frac{2\pi}{3}}$,解得$AB = \frac{BD\sin\frac{2\pi}{3}}{\sin\frac{\pi}{12}}=\frac{\frac{2\sqrt{3}}{3} × \frac{\sqrt{3}}{2}}{\frac{\sqrt{6} - \sqrt{2}}{4}}=\sqrt{6} + \sqrt{2}$.
9. [2024·淮安四校联考]在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$.若$3b\cos C=c(1-3\cos B)$,则$c:a=$(
C
)

A.$1:3$
B.$4:3$
C.$3:1$
D.$3:2$
答案: 9.C[解析]由$3b\cos C = c(1 - 3\cos B)$及正弦定理可得$3\sin B\cos C = \sin C(1 - 3\cos B)$,化简可得$\sin C = 3\sin(B + C)$.又$A + B + C = \pi$,所以$\sin C = 3\sin A$.所以$c:a = \sin C:\sin A = 3:1$.故选C.
10. [2024·郑州四中期中]设$a$,$b$,$c$分别为$\triangle ABC$内角$A$,$B$,$C$的对边.已知$a\sin A=2b\cos A\cos C+2c\cos A\cos B$,则$\tan A=$(
D
)

A.$\sqrt{2}$
B.1
C.$\frac{1}{2}$
D.2
答案: 10.D[解析]由$a\sin A = 2b\cos A\cos C + 2c\cos A\cos B$及正弦定理$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,可得$\sin^{2}A = 2\cos A(\sin B\cos C + \cos B\sin C)=2\cos A\sin(B + C)=2\cos A\sin A$,因为$\sin A > 0$,所以$\sin A = 2\cos A$,所以$\tan A = \frac{\sin A}{\cos A}=2$.故选D
11. [2024·烟台一中月考]在$\triangle ABC$中,内角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$.已知$\sqrt{3}b\sin A-a\cos B=2b-c$,则$A=$(
C
)

A.$\frac{\pi}{6}$
B.$\frac{\pi}{4}$
C.$\frac{\pi}{3}$
D.$\frac{2\pi}{3}$
答案: 11.C[解析]由已知和正弦定理得$\sqrt{3}\sin B\sin A - \sin A\cos B = 2\sin B - \sin C$,即$\sqrt{3}\sin B\sin A - \sin A\cos B = 2\sin B - \sin(A + B)$,即$\sqrt{3}\sin B\sin A - \sin A\cos B = 2\sin B - (\sin A\cos B + \cos A\sin B)$,所以$\sqrt{3}\sin B\sin A = 2\sin B - \cos A\sin B$,因为$\sin B \neq 0$,所以$\sqrt{3}\sin A + \cos A = 2$,即$\sin(A + \frac{\pi}{6}) = 1$,所以$A + \frac{\pi}{6} = \frac{\pi}{2} + 2k\pi$,即$A = \frac{\pi}{3} + 2k\pi$,又因为$A \in (0,\pi)$,所以$A = \frac{\pi}{3}$.故选C.
12. [2024·江苏启东中学月考]已知在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,且$A:B:C=1:2:3$,$a=1$,则$\frac{a-2b+c}{\sin A-2\sin B+\sin C}=$
2
.
答案: 12.2 [解析]因为$A:B:C = 1:2:3$,所以$A = 30^{\circ}$,$B = 60^{\circ}$,$C = 90^{\circ}$.因为$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{1}{\sin30^{\circ}} = 2$,所以$a = 2\sin A$,$b = 2\sin B$,$c = 2\sin C$.所以$\frac{a - 2b + c}{\sin A - 2\sin B + \sin C}=2$.
13. [2024·襄阳四中月考]在锐角三角形$ABC$中,内角$A$,$B$,$C$的对边分别是$a$,$b$,$c$,且$\sqrt{3}(a\cos B+b\cos A)=2c\sin B$,$a=2$,则边长$b$的取值范围是(
C
)

A.$(0,\sqrt{3})$
B.$(0,2\sqrt{3})$
C.$(\sqrt{3},2\sqrt{3})$
D.$(\sqrt{3},+\infty)$
答案: 13.C[解析]因为$\sqrt{3}(a\cos B + b\cos A) = 2c\sin B$,所以$\sqrt{3}(\sin A\cos B + \sin B\cos A) = 2\sin C\sin B$,所以$\sqrt{3}\sin C = 2\sin C\sin B$.又$\sin C \neq 0$,所以$\sin B = \frac{\sqrt{3}}{2}$,因为$0 < B < \frac{\pi}{2}$,所以$B = \frac{\pi}{3}$.所以$\frac{\pi}{6} < A < \frac{\pi}{2}$,即$\frac{1}{2} < \sin A < 1$.由正弦定理$\frac{b}{\sin B}=\frac{a}{\sin A}$可得$b = \frac{a\sin B}{\sin A}=\frac{\sqrt{3}}{\sin A}$,所以$\sqrt{3} < b < 2\sqrt{3}$,所以边长$b$的取值范围为$(\sqrt{3},2\sqrt{3})$.
14. [2024·深圳中学期末](多选)在锐角三角形$ABC$中,角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$,且$a^{2}=b(b+c)$,则下列结论正确的有(
AC
)

A.$A=2B$
B.$B$的取值范围为$(0,\frac{\pi}{4})$
C.$\frac{a}{b}$的取值范围为$(\sqrt{2},\sqrt{3})$
D.$\frac{1}{\tan B}-\frac{1}{\tan A}+2\sin A$的取值范围为$(\frac{5\sqrt{3}}{3},6)$
答案: 14.AC[解析]因为$a^{2} = b(b + c)$,且$a^{2} = b^{2} + c^{2} - 2bc\cos A$,所以$b(b + c) = b^{2} + c^{2} - 2bc\cos A$,即$bc = c^{2} - 2bc\cos A$,所以$b = c - 2b\cos A$,即$c - b = 2b\cos A$,由正弦定理可得$\sin C - \sin B = 2\sin B\cos A$,又$\sin C = \sin(A + B)=\sin A\cos B + \cos A\sin B$,所以$\sin A\cos B + \cos A\sin B - \sin B = 2\sin B\cos A$,所以$\sin A\cos B - \cos A\sin B = \sin(A - B) = \sin B$,因为$A$,$B$,$C$为锐角,所以$A - B = B$,即$A = 2B$,故A正确;
因为$\begin{cases}0 < 2B < \frac{\pi}{2},\\0 < \pi - 3B < \frac{\pi}{2}.\end{cases}$所以$\frac{\pi}{6} < B < \frac{\pi}{4}$,$\frac{\pi}{3} < A < \frac{\pi}{2}$,故B错误;
因为$\frac{a}{b}=\frac{\sin A}{\sin B}=\frac{2\sin B\cos B}{\sin B}=2\cos B \in (\sqrt{2},\sqrt{3})$,故C正确;
因为$\frac{1}{\tan B}-\frac{1}{\tan A}+2\sin A=\frac{\cos B}{\sin B}-\frac{\cos A}{\sin A}+2\sin A=\frac{\sin(A - B)}{\sin B\sin A}+2\sin A$,又$\sin(A - B)=\sin B$,所以$\frac{1}{\tan B}-\frac{1}{\tan A}+2\sin A=\frac{\sin B}{\sin B\sin A}+2\sin A=\frac{1}{\sin A}+2\sin A$,令$t = \sin A(\frac{\sqrt{3}}{2} < t < 1)$,由对勾函数的性质可知,$f(t)=\frac{1}{t}+2t$在$t \in (\frac{\sqrt{3}}{2},1)$上单调递增,又$f(\frac{\sqrt{3}}{2})=\frac{1}{\frac{\sqrt{3}}{2}}+2 × \frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{3}$,$f(1)=\frac{1}{1}+2 × 1 = 3$,所以$\frac{1}{\tan B}-\frac{1}{\tan A}+2\sin A \in (\frac{5\sqrt{3}}{3},3)$,故D错误.故选AC.
15. [2024·济南二中期中]在$\triangle ABC$中,内角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$,且$a\sin C=\sqrt{3}c\cos A$.
(1)求$A$的大小;
(2)若$b=2$,且$\frac{\pi}{4}\leqslant B\leqslant\frac{\pi}{3}$,求$c$的取值范围.
答案: 15.
(1)由题意得$\frac{a}{\sqrt{3}\cos A}=\frac{c}{\sin C}$.
由正弦定理得$\frac{\sin A}{\sqrt{3}\cos A}=\frac{\sin C}{\sin C}=1$.
所以$\tan A = \sqrt{3}$.因为$A \in (0,\pi)$,所以$A = \frac{\pi}{3}$.
(2)因为$b = 2$,$A = \frac{\pi}{3}$,所以在$\triangle ABC$中,由正弦定理得$\frac{b}{\sin B}=\frac{c}{\sin C}$,得$c = \frac{b\sin C}{\sin B}=\frac{2\sin C}{\sin B}=\frac{2\sin(\frac{2\pi}{3} - B)}{\sin B}=\frac{2(\sin\frac{2\pi}{3}\cos B - \cos\frac{2\pi}{3}\sin B)}{\sin B}=\frac{\sqrt{3}\cos B + \sin B}{\sin B}=\frac{\sqrt{3}\cos B}{\sin B}+1=\frac{\sqrt{3}}{\tan B}+1$.
因为$\frac{\pi}{4} \leq B \leq \frac{\pi}{3}$,所以$1 \leq \tan B \leq \sqrt{3}$,所以$2 \leq c \leq \sqrt{3} + 1$,即$c$的取值范围为$[2,\sqrt{3} + 1]$.
16. [2024·杭州七校联考]在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别是$a$,$b$,$c$,且满足$\sqrt{3}\sin B\cos B+\cos^{2}B=1$.
(1)求角$B$的值;
(2)若$b=\sqrt{3}$且$b\leqslant a$,求$a-\frac{1}{2}c$的取值范围.
答案: 16.
(1)由$\sqrt{3}\sin B\cos B + \cos^{2}B = \frac{\sqrt{3}}{2}\sin2B+\frac{\cos2B + 1}{2}=1$得$\frac{\sqrt{3}}{2}\sin2B+\frac{1}{2}\cos2B=\frac{1}{2}$,化简得$\sin(2B + \frac{\pi}{6}) = \frac{1}{2}$.
因为$B \in (0,\pi)$,所以$2B + \frac{\pi}{6} \in (\frac{\pi}{6},\frac{13\pi}{6})$,所以$2B + \frac{\pi}{6} = \frac{5\pi}{6}$,所以$B = \frac{\pi}{3}$.
(2)由正弦定理得$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{\sqrt{3}}{\sin\frac{\pi}{3}} = 2$,则$a = 2\sin A$,$c = 2\sin C$.
所以$a - \frac{1}{2}c = 2\sin A - \sin C = 2\sin A - \sin(\frac{2\pi}{3} - A)=2\sin A - \sin\frac{2\pi}{3}\cos A + \cos\frac{2\pi}{3}\sin A=\frac{3}{2}\sin A - \frac{\sqrt{3}}{2}\cos A=\sqrt{3}\sin(A - \frac{\pi}{6})$.
因为$b \leq a$,所以$\frac{\pi}{3} \leq A < \frac{2\pi}{3}$,所以$\frac{\pi}{6} \leq A - \frac{\pi}{6} < \frac{\pi}{2}$,则$\frac{1}{2} \leq \sin(A - \frac{\pi}{6}) < 1$,
所以$a - \frac{1}{2}c = \sqrt{3}\sin(A - \frac{\pi}{6}) \in [\frac{\sqrt{3}}{2},\sqrt{3})$,
即$a - \frac{1}{2}c$的取值范围是$[\frac{\sqrt{3}}{2},\sqrt{3})$.

查看更多完整答案,请扫码查看

关闭