2025年热搜题高中数学必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年热搜题高中数学必修第二册人教版》

7. [2024·南京秦淮中学期末]如图所示,在平面直角坐标系$Oxy$中,已知四边形$OABC$是等腰梯形,$OA// BC$,$A(6,0)$,$C(1,\sqrt{3})$,点$M$满足$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OA}$,点$P$在线段$BC$上运动(包括端点)。
(1)求$\angle OCM$的余弦值。
(2)是否存在实数$\lambda$,使$(\overrightarrow{OA} - \lambda\overrightarrow{OP})\perp\overrightarrow{CM}$成立?若存在,求出实数$\lambda$的取值范围;若不存在,请说明理由。
答案: 7.
(1)由题意可得$\overrightarrow{CO} = (-1,-\sqrt{3})$,$\overrightarrow{CM} = \overrightarrow{OM} + \overrightarrow{CO} = \frac{1}{2}\overrightarrow{OA} + \overrightarrow{CO} = (3,0) + (-1,-\sqrt{3}) = (2,-\sqrt{3})$,故$\cos \angle OCM = \cos \langle \overrightarrow{CO},\overrightarrow{CM} \rangle = \frac{\overrightarrow{CO} · \overrightarrow{CM}}{|\overrightarrow{CO}||\overrightarrow{CM}|} = \frac{\sqrt{7}}{14}$.
(2)设$P(t,\sqrt{3})$,其中$1 \leq t \leq 5$,$\lambda\overrightarrow{OP} = (\lambda t,\sqrt{3}\lambda)$,$\overrightarrow{OA} - \lambda\overrightarrow{OP} = (6 - \lambda t,-\sqrt{3}\lambda)$,$\overrightarrow{CM} = (2,-\sqrt{3})$,若$(\overrightarrow{OA} - \lambda\overrightarrow{OP}) \perp \overrightarrow{CM}$,则$(\overrightarrow{OA} - \lambda\overrightarrow{OP}) · \overrightarrow{CM} = 0$,即$12 - 2\lambda t + 3\lambda = 0$,可得$(2t - 3)\lambda = 12$.若$t = \frac{3}{2}$,则$\lambda$不存在;若$t \neq \frac{3}{2}$,则$\lambda = \frac{12}{2t - 3}$.因为$t \in [1,\frac{3}{2}) \cup (\frac{3}{2},5]$,所以$-1 \leq 2t - 3 \leq 7$,且$2t - 3 \neq 0$,所以$\lambda \in (-\infty,-12] \cup [\frac{12}{7},+\infty)$,所以实数$\lambda$的取值范围是$(-\infty,-12] \cup [\frac{12}{7},+\infty)$.
8. [2024·太原五中月考]已知向量$a = (4\sin\alpha,1 - \cos\alpha)$,$b = (1,-2)$,若$a· b = -2$,则$\frac{\sin\alpha\cos\alpha}{2\sin^2\alpha - \cos^2\alpha}=$(
A
)

A.1
B.$-1$
C.$-\frac{2}{7}$
D.$-\frac{1}{2}$
答案: 8.A【解析】由$a · b = -2$,得$4\sin \alpha - 2(1 - \cos \alpha) = -2$,整理得$\tan \alpha = -\frac{1}{2}$,所以$\frac{\sin \alpha \cos \alpha}{2\sin^{2} \alpha - \cos^{2} \alpha} = \frac{\tan \alpha}{2\tan^{2} \alpha - 1} = \frac{-\frac{1}{2}}{2 × (-\frac{1}{2})^{2} - 1} = 1$. 故选A.
9. [2024·枣庄三中期中]已知向量$a = (\cos\frac{3}{2}x,\sin\frac{3}{2}x)$,$b = (\cos\frac{x}{2},\sin\frac{x}{2})$,且$x\in[0,\frac{\pi}{2}]$,$f(x) = a· b - 2\lambda|a - b|$($\lambda$为常数)。
(1)求$a· b$及$|a - b|$;
(2)若$f(x)$的最大值是$\frac{3}{2}$,求实数$\lambda$的值。
答案: 9.
(1)$a · b = \cos \frac{3}{2}x \cos \frac{x}{2} + \sin \frac{3}{2}x \sin \frac{x}{2} = \cos x$,$|a - b| = \sqrt{(\cos \frac{3}{2}x - \cos \frac{x}{2})^{2} + (\sin \frac{3}{2}x - \sin \frac{x}{2})^{2}} = \sqrt{2 - 2\cos x} = 2|\sin \frac{x}{2}|$,因为$x \in [0,\frac{\pi}{2}]$,所以$\sin \frac{x}{2} > 0$,所以$|a - b| = 2\sin \frac{x}{2}$.
(2)$f(x) = \cos x - 4\lambda \sin \frac{x}{2} = -2(\sin \frac{x}{2} + \lambda)^{2} + 2\lambda^{2} + 1$.因为$x \in [0,\frac{\pi}{2}]$,所以$0 \leq \sin \frac{x}{2} \leq \frac{\sqrt{2}}{2}$.
①若$\lambda > 0$,当且仅当$\sin \frac{x}{2} = 0$时,$f(x)$取得最大值1,这与已知矛盾;
②若$-\frac{\sqrt{2}}{2} \leq \lambda \leq 0$,当且仅当$\sin \frac{x}{2} = -\lambda$时,$f(x)$取得最大值$2\lambda^{2} + 1$,由已知得$2\lambda^{2} + 1 = \frac{3}{2}$,解得$\lambda = -\frac{1}{2}$;
③若$\lambda < -\frac{\sqrt{2}}{2}$,当且仅当$\sin \frac{x}{2} = \frac{\sqrt{2}}{2}$时,$f(x)$取得最大值$-2\sqrt{2}\lambda$,由已知得$-2\sqrt{2}\lambda = \frac{3}{2}$,解得$\lambda = -\frac{3\sqrt{2}}{8}$,这与$\lambda < -\frac{\sqrt{2}}{2}$矛盾.综上所述,$\lambda = -\frac{1}{2}$.
10. [2024·杭州二中月考]已知$\theta\in[0,\pi)$,向量$a = (\cos\theta,\sin\theta)$,$b = (1,0)$,$O$为坐标原点,$P_1$,$P_2$,$P_3$是坐标平面上的三点,且$\overrightarrow{OP_2} = 2[\overrightarrow{OP_1} - (a·\overrightarrow{OP_1})· a]$,$\overrightarrow{OP_3} = 2[\overrightarrow{OP_2} - (b·\overrightarrow{OP_2})· b]$。
(1)若$\theta = \frac{\pi}{2}$,$P_1$的坐标为$(20,21)$,求$\overrightarrow{OP_3}$;
(2)若$\theta = \frac{2\pi}{3}$,$|\overrightarrow{OP_1}| = 6$,求$|\overrightarrow{OP_3}|$的最大值;
(3)若存在$\alpha\in[0,\pi)$,使得当$\overrightarrow{OP_1} = (\cos\alpha,\sin\alpha)$时,$\triangle P_1P_2P_3$为等边三角形,求$\theta$的所有可能值。
答案: 10.
(1)当$\theta = \frac{\pi}{2}$时,$a = (0,1)$.因为$P_1$的坐标为$(20,21)$,所以$\overrightarrow{OP_1} = (20,21)$,所以$\overrightarrow{OP_2} = 2[\overrightarrow{OP_1} - (a · \overrightarrow{OP_1}) · a] = 2[(20,21) - 21(0,1)] = (40,0)$,所以$\overrightarrow{OP_3} = 2[\overrightarrow{OP_2} - (b · \overrightarrow{OP_2}) · b] = 2[(40,0) - 40(1,0)] = (0,0)$.
(2)当$\theta = \frac{2\pi}{3}$时,$a = (-\frac{1}{2},\frac{\sqrt{3}}{2})$.因为$|\overrightarrow{OP_1}| = 6$,所以设$\overrightarrow{OP_1} = (6\cos \alpha,6\sin \alpha)$,则$\overrightarrow{OP_2} = 2[\overrightarrow{OP_1} - (a · \overrightarrow{OP_1}) · a] = 2[(6\cos \alpha,6\sin \alpha) - (3\sqrt{3}\sin \alpha - 3\cos \alpha) · (-\frac{1}{2},\frac{\sqrt{3}}{2})] = (3\sqrt{3}\sin \alpha + 9\cos \alpha,3\sin \alpha + 3\sqrt{3}\cos \alpha)$,所以$\overrightarrow{OP_3} = 2[\overrightarrow{OP_2} - (b · \overrightarrow{OP_2}) · b] = 2[(3\sqrt{3}\sin \alpha + 9\cos \alpha,3\sin \alpha + 3\sqrt{3}\cos \alpha) - (3\sqrt{3}\sin \alpha + 9\cos \alpha,3\sin \alpha + 3\sqrt{3}\cos \alpha) · (1,0)] = (0,6\sin \alpha + 6\sqrt{3}\cos \alpha)$,所以$|\overrightarrow{OP_3}| = |6\sin \alpha + 6\sqrt{3}\cos \alpha| = 12|\sin(\alpha + \frac{\pi}{3})|$,所以当$|\sin(\alpha + \frac{\pi}{3})| = 1$时,$|\overrightarrow{OP_3}|$取得最大值,最大值为12.
(3)因为$\overrightarrow{OP} = (\cos \alpha,\sin \alpha)$,所以$\overrightarrow{OP_2} = 2[\overrightarrow{OP} - (a · \overrightarrow{OP}) · a] = 2[(\cos \alpha,\sin \alpha) - (\cos \alpha \cos \theta + \sin \alpha \sin \theta)(\cos \theta,\sin \theta)] = 2(\sin \theta \sin(\theta - \alpha),\cos \theta \sin(\alpha - \theta))$,$\overrightarrow{OP_3} = 2[\overrightarrow{OP_2} - (b · \overrightarrow{OP_2}) · b] = 2[2(\sin \theta \sin(\theta - \alpha),\cos \theta \sin(\alpha - \theta)) - 2\sin \theta \sin(\theta - \alpha) · (1,0)] = 4(0,\cos \theta \sin(\alpha - \theta))$,$\overrightarrow{P_2P_3} = (2\sin \theta \sin(\theta - \alpha) - \cos \alpha,2\cos \theta \sin(\alpha - \theta) - \sin \alpha)$,所以$\overrightarrow{P_2P_3} = 2\sin(\theta - \alpha)(\sin \theta,\cos \theta)$.因为$\triangle P_1P_2P_3$为等边三角形,$\begin{cases} |\overrightarrow{P_2P_3}| = |\overrightarrow{P_2P_4}| = 2|\sin(\alpha - \theta)| = 1, \\ \frac{\overrightarrow{P_2P_3} · \overrightarrow{P_2P_4}}{|\overrightarrow{P_2P_3}||\overrightarrow{P_2P_4}|} = -\frac{1}{2}. \end{cases}$所以$|\sin(\alpha - \theta)| = \frac{1}{2}$,$(2\sin \theta \sin(\theta - \alpha) - \cos \alpha,2\cos \theta \sin(\alpha - \theta) - \sin \alpha) · (2\sin(\alpha - \theta) \sin \theta,2\sin(\alpha - \theta) \cos \theta) = -\frac{1}{2}$,整理得$\cos 2\alpha = -\frac{1}{2}$.又$2\alpha \in [0,2\pi)$,所以$\alpha = \frac{\pi}{3}$或$\alpha = \frac{2\pi}{3}$.当$\alpha = \frac{\pi}{3}$,$|\sin(\alpha - \theta)| = \frac{1}{2}$时,$\theta = \frac{\pi}{6}$或$\frac{\pi}{2}$;当$\alpha = \frac{2\pi}{3}$,$|\sin(\alpha - \theta)| = \frac{1}{2}$时,$\theta = \frac{5\pi}{6}$或$\frac{\pi}{2}$.综上所述,$\theta$的所有可能值为$\frac{\pi}{6},\frac{\pi}{2},\frac{5\pi}{6}$.

查看更多完整答案,请扫码查看

关闭