2025年热搜题高中数学必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第19页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
1. [2024·河北武邑中学月考]在$\triangle ABC$中,$A = \frac{\pi}{2}$,$AB = AC = 1$,$P$是$AB$边上的动点,$Q$是$AC$边上的动点,则$\overrightarrow{BQ}·\overrightarrow{CP}$的最小值为(
A.$-4$
B.$-2$
C.$-1$
D.0
B
)A.$-4$
B.$-2$
C.$-1$
D.0
答案:
1.B【解析】如图所示,建立平面直角坐标系,则$A(0,0)$,$B(1,0)$,$C(0,1)$,设$P(m,0)$,$Q(0,n)(0 \leq m,n \leq 1)$,则$\overrightarrow{BQ} = (-1,n)$,$\overrightarrow{CP} = (m,-1)$,故$\overrightarrow{BQ} · \overrightarrow{CP} = -(m + n) \geq -2$.
1.B【解析】如图所示,建立平面直角坐标系,则$A(0,0)$,$B(1,0)$,$C(0,1)$,设$P(m,0)$,$Q(0,n)(0 \leq m,n \leq 1)$,则$\overrightarrow{BQ} = (-1,n)$,$\overrightarrow{CP} = (m,-1)$,故$\overrightarrow{BQ} · \overrightarrow{CP} = -(m + n) \geq -2$.
2. [2024·武汉十一中期中]在边长为1的正方形$ABCD$中,$M$为$BC$的中点,点$E$在线段$AB$上运动,则$\overrightarrow{EC}·\overrightarrow{EM}$的取值范围是(
A.$[\frac{1}{2},2]$
B.$[0,\frac{3}{2}]$
C.$[\frac{1}{2},\frac{3}{2}]$
D.$[0,1]$
C
)A.$[\frac{1}{2},2]$
B.$[0,\frac{3}{2}]$
C.$[\frac{1}{2},\frac{3}{2}]$
D.$[0,1]$
答案:
2.C【解析】将正方形放入如图所示的平面直角坐标系中,设$E(x,0)(0 \leq x \leq 1)$. 因为$M(1,\frac{1}{2})$,$C(1,1)$,所以$\overrightarrow{EM} = (1 - x,\frac{1}{2})$,$\overrightarrow{EC} = (1 - x,1)$,所以$\overrightarrow{EC} · \overrightarrow{EM} = (1 - x,\frac{1}{2}) · (1 - x,1) = (1 - x)^{2} + \frac{1}{2}$. 又因为$0 \leq x \leq 1$,所以$\frac{1}{2} \leq (1 - x)^{2} + \frac{1}{2} \leq \frac{3}{2}$,即$\overrightarrow{EC} · \overrightarrow{EM}$的取值范围是$[\frac{1}{2},\frac{3}{2}]$.
2.C【解析】将正方形放入如图所示的平面直角坐标系中,设$E(x,0)(0 \leq x \leq 1)$. 因为$M(1,\frac{1}{2})$,$C(1,1)$,所以$\overrightarrow{EM} = (1 - x,\frac{1}{2})$,$\overrightarrow{EC} = (1 - x,1)$,所以$\overrightarrow{EC} · \overrightarrow{EM} = (1 - x,\frac{1}{2}) · (1 - x,1) = (1 - x)^{2} + \frac{1}{2}$. 又因为$0 \leq x \leq 1$,所以$\frac{1}{2} \leq (1 - x)^{2} + \frac{1}{2} \leq \frac{3}{2}$,即$\overrightarrow{EC} · \overrightarrow{EM}$的取值范围是$[\frac{1}{2},\frac{3}{2}]$.
3. [2024·东北育才学校期中]如图,在直角梯形$ABCD$中,已知$AB// CD$,$\angle DAB = 90^{\circ}$,$AB = 4$,$AD = CD = 2$,对角线$AC$,$BD$交于点$O$,点$M$在$AB$上,且满足$OM\perp BD$。
(1)求$\overrightarrow{AM}·\overrightarrow{BD}$的值;
(2)若$N$为线段$AC$(含端点)上任意一点,求$\overrightarrow{AN}·\overrightarrow{MN}$的最小值。

(1)求$\overrightarrow{AM}·\overrightarrow{BD}$的值;
(2)若$N$为线段$AC$(含端点)上任意一点,求$\overrightarrow{AN}·\overrightarrow{MN}$的最小值。
答案:
3.
(1)以A为坐标原点,AB所在直线为$x$轴,AD所在直线为$y$轴建立如图所示的平面直角坐标系,则$A(0,0)$,$B(4,0)$,$C(2,2)$,$D(0,2)$,所以$\overrightarrow{BD} = (-4,2)$.由相似三角形易得$O(\frac{4}{3},\frac{4}{3})$.设$M(m,0)$,$0 < m < 4$,则$\overrightarrow{OM} = (m - \frac{4}{3},-\frac{4}{3})$,所以$\overrightarrow{OM} · \overrightarrow{BD} = (m - \frac{4}{3}) × (-4) + (-\frac{4}{3}) × 2 = -4m + \frac{8}{3} = 0$,解得$m = \frac{2}{3}$,所以$\overrightarrow{AM} = (\frac{2}{3},0)$.所以$\overrightarrow{AM} · \overrightarrow{BD} = \frac{2}{3} × (-4) + 0 × 2 = -\frac{8}{3}$.

(2)设$N(a,a)$,$0 \leq a \leq 2$,则$\overrightarrow{AN} · \overrightarrow{MN} = (a,a) · (a - \frac{2}{3},a) = 2a^{2} - \frac{2}{3}a = 2(a - \frac{1}{6})^{2} - \frac{1}{18}$,所以当$a = \frac{1}{6}$时,$\overrightarrow{AN} · \overrightarrow{MN}$取得最小值$-\frac{1}{18}$.
3.
(1)以A为坐标原点,AB所在直线为$x$轴,AD所在直线为$y$轴建立如图所示的平面直角坐标系,则$A(0,0)$,$B(4,0)$,$C(2,2)$,$D(0,2)$,所以$\overrightarrow{BD} = (-4,2)$.由相似三角形易得$O(\frac{4}{3},\frac{4}{3})$.设$M(m,0)$,$0 < m < 4$,则$\overrightarrow{OM} = (m - \frac{4}{3},-\frac{4}{3})$,所以$\overrightarrow{OM} · \overrightarrow{BD} = (m - \frac{4}{3}) × (-4) + (-\frac{4}{3}) × 2 = -4m + \frac{8}{3} = 0$,解得$m = \frac{2}{3}$,所以$\overrightarrow{AM} = (\frac{2}{3},0)$.所以$\overrightarrow{AM} · \overrightarrow{BD} = \frac{2}{3} × (-4) + 0 × 2 = -\frac{8}{3}$.
(2)设$N(a,a)$,$0 \leq a \leq 2$,则$\overrightarrow{AN} · \overrightarrow{MN} = (a,a) · (a - \frac{2}{3},a) = 2a^{2} - \frac{2}{3}a = 2(a - \frac{1}{6})^{2} - \frac{1}{18}$,所以当$a = \frac{1}{6}$时,$\overrightarrow{AN} · \overrightarrow{MN}$取得最小值$-\frac{1}{18}$.
4. [2024·扬州中学期末](多选)在$\triangle ABC$中,$\angle A = 90^{\circ}$,$AB = 3$,$AC = 4$,$D$为线段$AB$上靠近$A$点的三等分点,$E$为$CD$的中点,则(
A.$\overrightarrow{AE} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
B.$\overrightarrow{AE}$与$\overrightarrow{EB}$的夹角的余弦值为$\frac{15}{17}$
C.$\overrightarrow{AE}·\overrightarrow{CD} = -\frac{15}{2}$
D.$\triangle AED$的面积为2
AC
)A.$\overrightarrow{AE} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
B.$\overrightarrow{AE}$与$\overrightarrow{EB}$的夹角的余弦值为$\frac{15}{17}$
C.$\overrightarrow{AE}·\overrightarrow{CD} = -\frac{15}{2}$
D.$\triangle AED$的面积为2
答案:
4.AC【解析】以点A为坐标原点,AB,AC所在直线分别为$x$,$y$轴建立平面直角坐标系,如图所示.则$A(0,0)$,$B(3,0)$,$C(0,4)$,$D(1,0)$,$E(\frac{1}{2},2)$,所以$\overrightarrow{AE} = (\frac{1}{2},2)$,$\overrightarrow{AB} = (3,0)$,$\overrightarrow{AC} = (0,4)$,$\overrightarrow{EB} = (\frac{5}{2},-2)$,$\overrightarrow{CD} = (1,-4)$. 对于A,因为$\frac{1}{6}\overrightarrow{AB} = \frac{1}{6}(3,0) = (\frac{1}{2},0)$,$\frac{1}{2}\overrightarrow{AC} = \frac{1}{2}(0,4) = (0,2)$,所以$\overrightarrow{AE} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$,故A正确;对于B,$\overrightarrow{AE} · \overrightarrow{EB} = \frac{1}{2} × \frac{5}{2} - 2^{2} = -\frac{11}{4}$,$|\overrightarrow{AE}| = \frac{\sqrt{17}}{2}$,$|\overrightarrow{EB}| = \frac{\sqrt{41}}{2}$,所以$\overrightarrow{AE}$与$\overrightarrow{EB}$的夹角的余弦值$\cos \langle \overrightarrow{AE},\overrightarrow{EB} \rangle = -\frac{\frac{11}{4}}{\frac{\sqrt{17}}{2} × \frac{\sqrt{41}}{2}} = -\frac{11}{4} × \frac{4}{\sqrt{17} × \sqrt{41}}$,故B错误;对于C,$\overrightarrow{AE} · \overrightarrow{CD} = \frac{1}{2} × 1 - 2 × 4 = -\frac{15}{2}$,故C正确;对于D,$S_{\triangle AED} = \frac{1}{2} × |\overrightarrow{AD}| × |\overrightarrow{y_E}| = \frac{1}{2} × 1 × 2 = 1$,故D错误. 故选AC.
4.AC【解析】以点A为坐标原点,AB,AC所在直线分别为$x$,$y$轴建立平面直角坐标系,如图所示.则$A(0,0)$,$B(3,0)$,$C(0,4)$,$D(1,0)$,$E(\frac{1}{2},2)$,所以$\overrightarrow{AE} = (\frac{1}{2},2)$,$\overrightarrow{AB} = (3,0)$,$\overrightarrow{AC} = (0,4)$,$\overrightarrow{EB} = (\frac{5}{2},-2)$,$\overrightarrow{CD} = (1,-4)$. 对于A,因为$\frac{1}{6}\overrightarrow{AB} = \frac{1}{6}(3,0) = (\frac{1}{2},0)$,$\frac{1}{2}\overrightarrow{AC} = \frac{1}{2}(0,4) = (0,2)$,所以$\overrightarrow{AE} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$,故A正确;对于B,$\overrightarrow{AE} · \overrightarrow{EB} = \frac{1}{2} × \frac{5}{2} - 2^{2} = -\frac{11}{4}$,$|\overrightarrow{AE}| = \frac{\sqrt{17}}{2}$,$|\overrightarrow{EB}| = \frac{\sqrt{41}}{2}$,所以$\overrightarrow{AE}$与$\overrightarrow{EB}$的夹角的余弦值$\cos \langle \overrightarrow{AE},\overrightarrow{EB} \rangle = -\frac{\frac{11}{4}}{\frac{\sqrt{17}}{2} × \frac{\sqrt{41}}{2}} = -\frac{11}{4} × \frac{4}{\sqrt{17} × \sqrt{41}}$,故B错误;对于C,$\overrightarrow{AE} · \overrightarrow{CD} = \frac{1}{2} × 1 - 2 × 4 = -\frac{15}{2}$,故C正确;对于D,$S_{\triangle AED} = \frac{1}{2} × |\overrightarrow{AD}| × |\overrightarrow{y_E}| = \frac{1}{2} × 1 × 2 = 1$,故D错误. 故选AC.
5. [2024·天津一中月考]在等腰梯形$ABCD$中,已知$AB// DC$,$AB = 2$,$BC = 1$,$\angle ABC = 60^{\circ}$,点$E$,$F$,$G$分别在线段$BC$,$CD$和$AB$上,且$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF} = \frac{1}{2}\overrightarrow{DC}$,$\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AB}$,则$\triangle GEF$为(
A.直角三角形
B.等腰三角形
C.等边三角形
D.以上均不对
C
)A.直角三角形
B.等腰三角形
C.等边三角形
D.以上均不对
答案:
5.C【解析】以AB所在直线为$x$轴,AB的垂直平分线为$y$轴,建立如图所示的平面直角坐标系. 因为$AB // DC$,$AB = 2$,$BC = 1$,$\angle ABC = 60^{\circ}$,所以$A(-1,0)$,$B(1,0)$,$G(0,0)$,$C(\frac{1}{2},\frac{\sqrt{3}}{2})$,$D(-\frac{1}{2},\frac{\sqrt{3}}{2})$. 因为$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC}$,所以$E(\frac{3}{4},\frac{\sqrt{3}}{4})$.因为$\overrightarrow{DF} = \frac{1}{2}\overrightarrow{DC}$,所以$F(0,\frac{\sqrt{3}}{2})$,$\cos \angle GEF = \frac{\overrightarrow{GE} · \overrightarrow{FE}}{|\overrightarrow{GE}| · |\overrightarrow{FE}|} = \frac{1}{2}$. 同理$\cos \angle GFE = \frac{1}{2}$,$\cos \angle EGF = \frac{1}{2}$,故在$\triangle GEF$中,$\angle GEF = \angle GFE = \angle EGF = 60^{\circ}$,所以$\triangle GEF$为等边三角形.
5.C【解析】以AB所在直线为$x$轴,AB的垂直平分线为$y$轴,建立如图所示的平面直角坐标系. 因为$AB // DC$,$AB = 2$,$BC = 1$,$\angle ABC = 60^{\circ}$,所以$A(-1,0)$,$B(1,0)$,$G(0,0)$,$C(\frac{1}{2},\frac{\sqrt{3}}{2})$,$D(-\frac{1}{2},\frac{\sqrt{3}}{2})$. 因为$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC}$,所以$E(\frac{3}{4},\frac{\sqrt{3}}{4})$.因为$\overrightarrow{DF} = \frac{1}{2}\overrightarrow{DC}$,所以$F(0,\frac{\sqrt{3}}{2})$,$\cos \angle GEF = \frac{\overrightarrow{GE} · \overrightarrow{FE}}{|\overrightarrow{GE}| · |\overrightarrow{FE}|} = \frac{1}{2}$. 同理$\cos \angle GFE = \frac{1}{2}$,$\cos \angle EGF = \frac{1}{2}$,故在$\triangle GEF$中,$\angle GEF = \angle GFE = \angle EGF = 60^{\circ}$,所以$\triangle GEF$为等边三角形.
6. [2024·宁波镇海中学期末]如图,在直角梯形$ABCD$中,$AB// CD$,$\angle DAB = 90^{\circ}$,$AB = 2$,$CD = 1$,$P$是线段$AD$(包括端点)上的一个动点。
(1)当$AD = \sqrt{3}$时,求$\overrightarrow{AC}·\overrightarrow{AB}$的值;
(2)在(1)的条件下,若$\overrightarrow{PB}·\overrightarrow{PC} = \frac{5}{4}$,求$|\overrightarrow{AP}|$;
(3)求$|2\overrightarrow{PB} + \overrightarrow{PC}|$的最小值。

(1)当$AD = \sqrt{3}$时,求$\overrightarrow{AC}·\overrightarrow{AB}$的值;
(2)在(1)的条件下,若$\overrightarrow{PB}·\overrightarrow{PC} = \frac{5}{4}$,求$|\overrightarrow{AP}|$;
(3)求$|2\overrightarrow{PB} + \overrightarrow{PC}|$的最小值。
答案:
6.如图,以A为坐标原点,AB所在直线为$x$轴,AD所在直线为$y$轴,建立平面直角坐标系.由题意得,$A(0,0)$,$B(2,0)$,所以$\overrightarrow{AB} = (2,0)$.
(1)因为$AD = \sqrt{3}$,所以$C(1,\sqrt{3})$,所以$\overrightarrow{AC} = (1,\sqrt{3})$,因此$\overrightarrow{AC} · \overrightarrow{AB} = 1 × 2 + \sqrt{3} × 0 = 2$.
(2)设$|\overrightarrow{AP}| = t$,则点P的坐标为$(0,t)(0 \leq t \leq \sqrt{3})$,则$\overrightarrow{PB} = (2,-t)$,$\overrightarrow{PC} = (1,\sqrt{3} - t)$,所以$\overrightarrow{PB} · \overrightarrow{PC} = 2 × 1 + (-t) × (\sqrt{3} - t) = t^{2} - \sqrt{3}t + 2 = (t - \frac{\sqrt{3}}{2})^{2} + \frac{5}{4} = \frac{5}{4}$($0 \leq t \leq \sqrt{3}$),所以$t = \frac{\sqrt{3}}{2}$,即$|\overrightarrow{AP}| = \frac{\sqrt{3}}{2}$.
(3)设$C(1,c)(c > 0)$,$P(0,m)(0 \leq m \leq c)$,则$\overrightarrow{PB} = (2,-m)$,$\overrightarrow{PC} = (1,c - m)$,所以$2\overrightarrow{PB} + \overrightarrow{PC} = 2(2,-m) + (1,c - m) = (5,c - 3m)$,所以$|2\overrightarrow{PB} + \overrightarrow{PC}| = \sqrt{25 + (c - 3m)^{2}} \geq 5$,当且仅当$m = \frac{c}{3}$时,等号成立,因此$|2\overrightarrow{PB} + \overrightarrow{PC}|$的最小值为5.
6.如图,以A为坐标原点,AB所在直线为$x$轴,AD所在直线为$y$轴,建立平面直角坐标系.由题意得,$A(0,0)$,$B(2,0)$,所以$\overrightarrow{AB} = (2,0)$.
(1)因为$AD = \sqrt{3}$,所以$C(1,\sqrt{3})$,所以$\overrightarrow{AC} = (1,\sqrt{3})$,因此$\overrightarrow{AC} · \overrightarrow{AB} = 1 × 2 + \sqrt{3} × 0 = 2$.
(2)设$|\overrightarrow{AP}| = t$,则点P的坐标为$(0,t)(0 \leq t \leq \sqrt{3})$,则$\overrightarrow{PB} = (2,-t)$,$\overrightarrow{PC} = (1,\sqrt{3} - t)$,所以$\overrightarrow{PB} · \overrightarrow{PC} = 2 × 1 + (-t) × (\sqrt{3} - t) = t^{2} - \sqrt{3}t + 2 = (t - \frac{\sqrt{3}}{2})^{2} + \frac{5}{4} = \frac{5}{4}$($0 \leq t \leq \sqrt{3}$),所以$t = \frac{\sqrt{3}}{2}$,即$|\overrightarrow{AP}| = \frac{\sqrt{3}}{2}$.
(3)设$C(1,c)(c > 0)$,$P(0,m)(0 \leq m \leq c)$,则$\overrightarrow{PB} = (2,-m)$,$\overrightarrow{PC} = (1,c - m)$,所以$2\overrightarrow{PB} + \overrightarrow{PC} = 2(2,-m) + (1,c - m) = (5,c - 3m)$,所以$|2\overrightarrow{PB} + \overrightarrow{PC}| = \sqrt{25 + (c - 3m)^{2}} \geq 5$,当且仅当$m = \frac{c}{3}$时,等号成立,因此$|2\overrightarrow{PB} + \overrightarrow{PC}|$的最小值为5.
查看更多完整答案,请扫码查看