2025年热搜题高中数学必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第22页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
1. [2024·江西临川一中月考]在直角三角形ABC中,D是斜边AB的中点,P为线段CD的中点,则$\frac{|PA|^{2}+|PB|^{2}}{|PC|^{2}}=$(
A.2
B.4
C.5
D.10
D
)A.2
B.4
C.5
D.10
答案:
1.D [解析]将$\triangle ABC$各边及$PA$,$PB$,$PC$均用向量表示,则$\frac{|PA|^2 + |PB|^2}{|PC|^2} = \frac{\overrightarrow{PA^2} + \overrightarrow{PB^2}}{\overrightarrow{PC^2}} = \frac{(\overrightarrow{PC} + \overrightarrow{CA})^2 + (\overrightarrow{PC} + \overrightarrow{CB})^2}{\overrightarrow{PC^2}} = \frac{2|\overrightarrow{PC|^2} + 2\overrightarrow{PC} · (\overrightarrow{CA} + \overrightarrow{CB}) + |\overrightarrow{AB}|^2}{\overrightarrow{PC|^2}} = \frac{2|\overrightarrow{PC|^2} + 2\overrightarrow{PC} · 2\overrightarrow{CD} + 4|\overrightarrow{CD|^2}}{\overrightarrow{PC|^2}} = \frac{2|\overrightarrow{PC|^2} + 2\overrightarrow{PC} · 4\overrightarrow{CP} + 16|\overrightarrow{PC|^2}}{|\overrightarrow{PC|^2}} = -6 + 16 = 10$. 故选D.
2. [2024·衡水一中月考]已知H为△ABC的垂心,若$\overrightarrow{AH}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}$,则$\sin\angle BAC=$(
A.$\frac{\sqrt{15}}{5}$
B.$\frac{\sqrt{10}}{5}$
C.$\frac{\sqrt{6}}{3}$
D.$\frac{\sqrt{3}}{3}$
C
)A.$\frac{\sqrt{15}}{5}$
B.$\frac{\sqrt{10}}{5}$
C.$\frac{\sqrt{6}}{3}$
D.$\frac{\sqrt{3}}{3}$
答案:
2.C [解析]依题意,$\overrightarrow{BH} = \overrightarrow{BA} + \overrightarrow{AH} = -\frac{2}{3}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$,同理$\overrightarrow{CH} = \overrightarrow{CA} + \overrightarrow{AH} = \frac{1}{3}\overrightarrow{AB} - \frac{3}{5}\overrightarrow{AC}$. 由$H$为$\triangle ABC$的垂心,得$\overrightarrow{BH} · \overrightarrow{AC} = 0$,即$(-\frac{2}{3}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}) · \overrightarrow{AC} = 0$,则$\frac{2}{5}|\overrightarrow{AC}|^2 = \frac{2}{3}|\overrightarrow{AC}||\overrightarrow{AB}|\cos\angle BAC$,即$\cos\angle BAC = \frac{3|\overrightarrow{AC|}}{5|\overrightarrow{AB|}}$,同理有$\overrightarrow{CH} · \overrightarrow{AB} = 0$,即$(\frac{1}{3}\overrightarrow{AB} - \frac{3}{5}\overrightarrow{AC}) · \overrightarrow{AB} = 0$,则$\frac{1}{3}|\overrightarrow{AB}|^2 = \frac{3}{5}|\overrightarrow{AC}||\overrightarrow{AB}|\cos\angle BAC$,即$\cos\angle BAC = \frac{5|\overrightarrow{AB|}}{9|\overrightarrow{AC|}}$,解得$\cos^2\angle BAC = \frac{1}{3}$,则$\sin^2\angle BAC = 1 - \cos^2\angle BAC = 1 - \frac{1}{3} = \frac{2}{3}$. 又$\angle BAC \in (0, \pi)$,所以$\sin\angle BAC = \frac{\sqrt{6}}{3}$. 故选C.
3. [2024·扬州中学月考]在△ABC中,$\angle BAC = 60^{\circ}$,$\angle BAC$的平分线AD交边BC于点D,已知$AB = 3$,且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$,则AD的长为(
A.$\sqrt{3}$
B.3
C.$2\sqrt{3}$
D.$3\sqrt{3}$
C
)A.$\sqrt{3}$
B.3
C.$2\sqrt{3}$
D.$3\sqrt{3}$
答案:
3.C [解析]如图,过$D$作$DE // AC$交$AB$于点$E$,作$DF // AB$交$AC$于点$F$,则$\overrightarrow{AD} = \overrightarrow{AE} + \overrightarrow{AF}$. 因为$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB}$,所以$\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$,$\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC}$,所以$\frac{BD}{BC} = \frac{AF}{AC}$,即$\frac{BD}{DC} = \frac{1}{2}$. 又$AD$是$\angle BAC$的平分线,所以$\frac{AB}{AC} = \frac{BD}{CD} = \frac{1}{2}$,而$AB = 3$,所以$AC = 6$,所以$\overrightarrow{AB} · \overrightarrow{AC} = |\overrightarrow{AB}||\overrightarrow{AC}|\cos\angle BAC = 3 × 6 × \cos 60° = 9$,所以$\overrightarrow{AD^2} = (\frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB})^2 = \frac{1}{9}\overrightarrow{AC^2} + \frac{4}{9}\overrightarrow{AC} · \overrightarrow{AB} + \frac{4}{9}\overrightarrow{AB^2} = \frac{1}{9} × 6^2 + \frac{4}{9} × 9 + \frac{4}{9} × 3^2 = 12$,所以$|\overrightarrow{AD}| = 2\sqrt{3}$. 故选C.
3.C [解析]如图,过$D$作$DE // AC$交$AB$于点$E$,作$DF // AB$交$AC$于点$F$,则$\overrightarrow{AD} = \overrightarrow{AE} + \overrightarrow{AF}$. 因为$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB}$,所以$\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$,$\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC}$,所以$\frac{BD}{BC} = \frac{AF}{AC}$,即$\frac{BD}{DC} = \frac{1}{2}$. 又$AD$是$\angle BAC$的平分线,所以$\frac{AB}{AC} = \frac{BD}{CD} = \frac{1}{2}$,而$AB = 3$,所以$AC = 6$,所以$\overrightarrow{AB} · \overrightarrow{AC} = |\overrightarrow{AB}||\overrightarrow{AC}|\cos\angle BAC = 3 × 6 × \cos 60° = 9$,所以$\overrightarrow{AD^2} = (\frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB})^2 = \frac{1}{9}\overrightarrow{AC^2} + \frac{4}{9}\overrightarrow{AC} · \overrightarrow{AB} + \frac{4}{9}\overrightarrow{AB^2} = \frac{1}{9} × 6^2 + \frac{4}{9} × 9 + \frac{4}{9} × 3^2 = 12$,所以$|\overrightarrow{AD}| = 2\sqrt{3}$. 故选C.
4. [2024·重庆巴蜀中学月考]如图,在平行四边形ABCD中,E,F分别是AD,AB的中点,G为BE与DF的交点。若$\overrightarrow{AB}=\boldsymbol{a}$,$\overrightarrow{AD}=\boldsymbol{b}$,求证:A,G,C三点共线。

答案:
4.证明:$\overrightarrow{BE} = \overrightarrow{AE} - \overrightarrow{AB} = \frac{1}{2}\mathbf{b} - \mathbf{a}$,$\overrightarrow{DF} = \overrightarrow{AF} - \overrightarrow{AD} = \frac{1}{2}\mathbf{a} - \mathbf{b}$. 因为$D$,$G$,$F$三点共线,所以$\overrightarrow{DG} = \lambda\overrightarrow{DF}$,$\lambda \in \mathbf{R}$,即$\overrightarrow{AG} = \overrightarrow{AD} + \lambda\overrightarrow{DF} = \frac{1}{2}\lambda\mathbf{a} + (1 - \lambda)\mathbf{b}$. 因为$B$,$G$,$E$三点共线,所以$\overrightarrow{BG} = \mu\overrightarrow{BE}$,$\mu \in \mathbf{R}$,即$\overrightarrow{AG} = \overrightarrow{AB} + \mu\overrightarrow{BE} = (1 - \mu)\mathbf{a} + \frac{1}{2}\mu\mathbf{b}$,则$\begin{cases} \frac{1}{2}\lambda = 1 - \mu, \\ 1 - \lambda = \frac{1}{2}\mu, \end{cases}$解得$\lambda = \frac{2}{3}$,所以$\overrightarrow{AG} = \frac{1}{3}(\mathbf{a} + \mathbf{b}) = \frac{1}{3}\overrightarrow{AC}$,所以$A$,$G$,$C$三点共线.
5. [2024·黄冈中学单元检测]在等腰三角形ABC中,$AC\perp BC$,$AC = BC$,D是BC的中点,E是AB上一点,且$AE = 2EB$。求证:$AD\perp CE$。
答案:
5.证明:建立如图所示的平面直角坐标系,设$CA = CB = 2$,则$A(2, 0)$,$B(0, 2)$,$C(0, 0)$,设$E(x, y)$. 因为$D$为$BC$的中点,所以$D(0, 1)$. 因为$AE = 2EB$,所以$\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$,所以$(x - 2, y) = \frac{2}{3}(-2, 2)$,所以$\begin{cases} x - 2 = -\frac{4}{3}, \\ y = \frac{4}{3}, \end{cases}$解得$\begin{cases} x = \frac{2}{3}, \\ y = \frac{4}{3}, \end{cases}$所以$E(\frac{2}{3}, \frac{4}{3})$. 所以$\overrightarrow{AD} · \overrightarrow{CE} = (-2, 1) · (\frac{2}{3}, \frac{4}{3}) = -\frac{4}{3} + \frac{4}{3} = 0$,所以$\overrightarrow{AD} \perp \overrightarrow{CE}$,所以$AD \perp CE$.
5.证明:建立如图所示的平面直角坐标系,设$CA = CB = 2$,则$A(2, 0)$,$B(0, 2)$,$C(0, 0)$,设$E(x, y)$. 因为$D$为$BC$的中点,所以$D(0, 1)$. 因为$AE = 2EB$,所以$\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$,所以$(x - 2, y) = \frac{2}{3}(-2, 2)$,所以$\begin{cases} x - 2 = -\frac{4}{3}, \\ y = \frac{4}{3}, \end{cases}$解得$\begin{cases} x = \frac{2}{3}, \\ y = \frac{4}{3}, \end{cases}$所以$E(\frac{2}{3}, \frac{4}{3})$. 所以$\overrightarrow{AD} · \overrightarrow{CE} = (-2, 1) · (\frac{2}{3}, \frac{4}{3}) = -\frac{4}{3} + \frac{4}{3} = 0$,所以$\overrightarrow{AD} \perp \overrightarrow{CE}$,所以$AD \perp CE$.
6. [2024·江苏启东中学月考]已知△ABC是等腰直角三角形,$\angle ABC = 90^{\circ}$,D是BC边的中点,$BE\perp AD$,垂足为E,延长BE交AC于点F,连接DF,求证:$\angle ADB=\angle FDC$。
答案:
6.证明:如图,以$B$为原点,$BC$,$BA$所在直线分别为$x$轴、$y$轴建立平面直角坐标系. 设$A(0, 2)$,$C(2, 0)$,则$D(1, 0)$,$\overrightarrow{AC} = (2, -2)$. 设$\overrightarrow{AF} = \lambda\overrightarrow{AC}$,则$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF} = (0, 2) + (2\lambda, -2\lambda) = (2\lambda, 2 - 2\lambda)$. 又$\overrightarrow{DA} = (-1, 2)$,$\overrightarrow{BF} \perp \overrightarrow{DA}$,所以$\overrightarrow{BF} · \overrightarrow{DA} = 0$,所以$-2\lambda + 2(2 - 2\lambda) = 0$,解得$\lambda = \frac{2}{3}$,所以$\overrightarrow{BF} = (\frac{4}{3}, \frac{2}{3})$,所以$\overrightarrow{DF} = \overrightarrow{BF} - \overrightarrow{BD} = (\frac{1}{3}, \frac{2}{3})$,又$\overrightarrow{DC} = (1, 0)$,所以$\cos\angle FDC = \frac{\overrightarrow{DF} · \overrightarrow{DC}}{|\overrightarrow{DF}||\overrightarrow{DC}|} = \frac{\sqrt{5}}{5}$. 又$\cos\angle ADB = \frac{\overrightarrow{DA} · \overrightarrow{DB}}{|\overrightarrow{DA}||\overrightarrow{DB}|} = \frac{\sqrt{5}}{5}$,$\angle ADB$,$\angle FDC \in (0, \pi)$,所以$\angle ADB = \angle FDC$.
6.证明:如图,以$B$为原点,$BC$,$BA$所在直线分别为$x$轴、$y$轴建立平面直角坐标系. 设$A(0, 2)$,$C(2, 0)$,则$D(1, 0)$,$\overrightarrow{AC} = (2, -2)$. 设$\overrightarrow{AF} = \lambda\overrightarrow{AC}$,则$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF} = (0, 2) + (2\lambda, -2\lambda) = (2\lambda, 2 - 2\lambda)$. 又$\overrightarrow{DA} = (-1, 2)$,$\overrightarrow{BF} \perp \overrightarrow{DA}$,所以$\overrightarrow{BF} · \overrightarrow{DA} = 0$,所以$-2\lambda + 2(2 - 2\lambda) = 0$,解得$\lambda = \frac{2}{3}$,所以$\overrightarrow{BF} = (\frac{4}{3}, \frac{2}{3})$,所以$\overrightarrow{DF} = \overrightarrow{BF} - \overrightarrow{BD} = (\frac{1}{3}, \frac{2}{3})$,又$\overrightarrow{DC} = (1, 0)$,所以$\cos\angle FDC = \frac{\overrightarrow{DF} · \overrightarrow{DC}}{|\overrightarrow{DF}||\overrightarrow{DC}|} = \frac{\sqrt{5}}{5}$. 又$\cos\angle ADB = \frac{\overrightarrow{DA} · \overrightarrow{DB}}{|\overrightarrow{DA}||\overrightarrow{DB}|} = \frac{\sqrt{5}}{5}$,$\angle ADB$,$\angle FDC \in (0, \pi)$,所以$\angle ADB = \angle FDC$.
7. [2024·晋城一中月考]一个物体受到同一平面内三个力$\boldsymbol{F}_{1}$,$\boldsymbol{F}_{2}$,$\boldsymbol{F}_{3}$的作用,沿北偏东$45^{\circ}$方向移动了8m,已知$|\boldsymbol{F}_{1}| = 2N$,方向为北偏东$30^{\circ}$,$|\boldsymbol{F}_{2}| = 4N$,方向为北偏东$60^{\circ}$,$|\boldsymbol{F}_{3}| = 6N$,方向为北偏西$30^{\circ}$,则这三个力的合力所做的功为(
A.24J
B.$24\sqrt{2}$J
C.$24\sqrt{3}$J
D.$24\sqrt{6}$J
D
)A.24J
B.$24\sqrt{2}$J
C.$24\sqrt{3}$J
D.$24\sqrt{6}$J
答案:
7.D [解析]如图所示,建立平面直角坐标系,则$F_1 = (1, \sqrt{3})$,$F_2 = (2\sqrt{3}, 2)$,$F_3 = (-3, 3\sqrt{3})$,则$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = (2\sqrt{3} - 2, 2 + 4\sqrt{3})$. 由已知得位移$\mathbf{s} = (4\sqrt{2}, 4\sqrt{2})$,故合力$\mathbf{F}$所做的功为$W = \mathbf{F} · \mathbf{s} = (2\sqrt{3} - 2) × 4\sqrt{2} + (2 + 4\sqrt{3}) × 4\sqrt{2} = 6\sqrt{3} × 4\sqrt{2} = 24\sqrt{6} (J)$. 故选D.
7.D [解析]如图所示,建立平面直角坐标系,则$F_1 = (1, \sqrt{3})$,$F_2 = (2\sqrt{3}, 2)$,$F_3 = (-3, 3\sqrt{3})$,则$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = (2\sqrt{3} - 2, 2 + 4\sqrt{3})$. 由已知得位移$\mathbf{s} = (4\sqrt{2}, 4\sqrt{2})$,故合力$\mathbf{F}$所做的功为$W = \mathbf{F} · \mathbf{s} = (2\sqrt{3} - 2) × 4\sqrt{2} + (2 + 4\sqrt{3}) × 4\sqrt{2} = 6\sqrt{3} × 4\sqrt{2} = 24\sqrt{6} (J)$. 故选D.
查看更多完整答案,请扫码查看