第105页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
12. 如图,在$\odot O$中,AB为直径,弦CD交AB于点P,且$OP = PC$,试猜想$\overset{\frown}{AD}与\overset{\frown}{CB}$之间的关系,并证明你的猜想.

猜想:$\overset{\frown}{AD}$与$\overset{\frown}{CB}$之间的关系是
证明:连接OC和OD。$\because OC = OD$,$\therefore \angle D = \angle C$。$\because OP = PC$,$\therefore \angle C = \angle COP$,$\therefore \angle D = \angle C = \angle COP$。又$\because \angle AOD = \angle DPO + \angle D$,$\angle DPO = \angle C + \angle COP$,$\therefore \angle AOD = \angle C + \angle COP + \angle D = 3\angle COP$,$\therefore \overset{\frown}{AD}=3\overset{\frown}{CB}$。
猜想:$\overset{\frown}{AD}$与$\overset{\frown}{CB}$之间的关系是
$\overset{\frown}{AD}=3\overset{\frown}{CB}$
。证明:连接OC和OD。$\because OC = OD$,$\therefore \angle D = \angle C$。$\because OP = PC$,$\therefore \angle C = \angle COP$,$\therefore \angle D = \angle C = \angle COP$。又$\because \angle AOD = \angle DPO + \angle D$,$\angle DPO = \angle C + \angle COP$,$\therefore \angle AOD = \angle C + \angle COP + \angle D = 3\angle COP$,$\therefore \overset{\frown}{AD}=3\overset{\frown}{CB}$。
答案:
$\overset{\frown}{AD}=3\overset{\frown}{CB}$,证明:连接OC和OD。$\because OC = OD$,$\therefore \angle D = \angle C$。$\because OP = PC$,$\therefore \angle C = \angle COP$,$\therefore \angle D = \angle C = \angle COP$。又$\because \angle AOD = \angle DPO + \angle D$,$\angle DPO = \angle C + \angle COP$,$\therefore \angle AOD = \angle C + \angle COP + \angle D = 3\angle COP$,$\therefore \overset{\frown}{AD}=3\overset{\frown}{CB}$。
13. 如图①,在同圆或等圆中,如果两个圆心角对应的两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等. 请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.
如图②,O是$∠EPF$的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.
(1)求证:$AB = CD$.
(2)若角的顶点P在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.

如图②,O是$∠EPF$的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.
(1)求证:$AB = CD$.
(2)若角的顶点P在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.
答案:
(1)证法一:如图①,过O作$OM\perp AB$于M,$ON\perp CD$于N,则$\angle OMB = \angle OND = 90^{\circ}$。$\because PO$平分$\angle EPF$,$\therefore OM = ON$,$\therefore AB = CD$。
证法二:如图①,过O作$OM\perp AB$于M,$ON\perp CD$于N,求出$ON = OM$,证明$\triangle OMB\cong\triangle OND(HL)$,推出$BM = DN$,根据垂径定理得出$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$。
(2)结论还成立,证明:如图②,当P在$\odot O$上时,$\because$由
(1)知,$BM = DN$,$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$;当P在$\odot O$内时,如图③,$\because$由
(1)知,$BM = DN$,$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$。


(1)证法一:如图①,过O作$OM\perp AB$于M,$ON\perp CD$于N,则$\angle OMB = \angle OND = 90^{\circ}$。$\because PO$平分$\angle EPF$,$\therefore OM = ON$,$\therefore AB = CD$。
证法二:如图①,过O作$OM\perp AB$于M,$ON\perp CD$于N,求出$ON = OM$,证明$\triangle OMB\cong\triangle OND(HL)$,推出$BM = DN$,根据垂径定理得出$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$。
(2)结论还成立,证明:如图②,当P在$\odot O$上时,$\because$由
(1)知,$BM = DN$,$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$;当P在$\odot O$内时,如图③,$\because$由
(1)知,$BM = DN$,$AB = 2BM$,$CD = 2DN$,$\therefore AB = CD$。
14. 如图,AB是$\odot O$的直径,点D,C在$\odot O$上,$∠DOC = 90^{\circ}$,$AC = 2$,$BD = 2\sqrt{2}$,则$\odot O$的半径为 ( )

A. $\sqrt{3}$
B. $\sqrt{5}$
C. $\sqrt{2}+1$
D. $\sqrt{10}$
A. $\sqrt{3}$
B. $\sqrt{5}$
C. $\sqrt{2}+1$
D. $\sqrt{10}$
答案:
D 解析:作半径$OE\perp AB$,交$\odot O$于点E,连接DE,作$BF\perp ED$,交ED的延长线于点F,连接BE,如图,$\because \angle DOC = 90^{\circ}$,$\angle BOE = \angle AOE = \angle BFE = 90^{\circ}$,$\therefore \angle DOE = \angle AOC$,$\therefore DE = AC = 2$。$\because \angle ODE = \frac{1}{2}\times(180^{\circ}-\angle DOE)$,$\angle ODB = \frac{1}{2}\times(180^{\circ}-\angle BOD)$,$\angle DOE + \angle BOD = \angle BOE = 90^{\circ}$,$\therefore \angle BDE = \angle ODE + \angle ODB = 135^{\circ}$,$\therefore \angle BDF = 45^{\circ}$。$\because BD = 2\sqrt{2}$,$\therefore DF = BF = 2$,$\therefore EF = 4$,$\therefore BE = \sqrt{2^{2}+4^{2}} = 2\sqrt{5}$。$\because \triangle BOE$为等腰直角三角形,$\therefore OB = \sqrt{10}$。
D 解析:作半径$OE\perp AB$,交$\odot O$于点E,连接DE,作$BF\perp ED$,交ED的延长线于点F,连接BE,如图,$\because \angle DOC = 90^{\circ}$,$\angle BOE = \angle AOE = \angle BFE = 90^{\circ}$,$\therefore \angle DOE = \angle AOC$,$\therefore DE = AC = 2$。$\because \angle ODE = \frac{1}{2}\times(180^{\circ}-\angle DOE)$,$\angle ODB = \frac{1}{2}\times(180^{\circ}-\angle BOD)$,$\angle DOE + \angle BOD = \angle BOE = 90^{\circ}$,$\therefore \angle BDE = \angle ODE + \angle ODB = 135^{\circ}$,$\therefore \angle BDF = 45^{\circ}$。$\because BD = 2\sqrt{2}$,$\therefore DF = BF = 2$,$\therefore EF = 4$,$\therefore BE = \sqrt{2^{2}+4^{2}} = 2\sqrt{5}$。$\because \triangle BOE$为等腰直角三角形,$\therefore OB = \sqrt{10}$。
15. 如图,将半径为2,圆心角为$120^{\circ}$的扇形OAB绕点A逆时针旋转一定角度,使点O的对应点D落在$\overset{\frown}{AB}$上,点B的对应点为点C,连接BC,则BC的长度是____.

答案:
$2\sqrt{3}$ 解析:如图,连接OD,BD。由题意,得$OA = OD = AD$,$\therefore \triangle AOD$是等边三角形,$\therefore \angle ADO = \angle AOD = 60^{\circ}$。$\because \angle ADC = \angle AOB = 120^{\circ}$,$\therefore \angle ADO + \angle ADC = 180^{\circ}$,$\therefore O$,$D$,$C$三点共线。$\because \angle AOD = \angle DOB = 60^{\circ}$,$OD = OB$,$\therefore \triangle OBD$是等边三角形,$\therefore \angle BDO = 60^{\circ}$。$\because DC = DB$,$\therefore \angle DCB = \angle DBC = 30^{\circ}$,$\therefore \angle OBC = 90^{\circ}$,$\therefore BC = 2\sqrt{3}$。
$2\sqrt{3}$ 解析:如图,连接OD,BD。由题意,得$OA = OD = AD$,$\therefore \triangle AOD$是等边三角形,$\therefore \angle ADO = \angle AOD = 60^{\circ}$。$\because \angle ADC = \angle AOB = 120^{\circ}$,$\therefore \angle ADO + \angle ADC = 180^{\circ}$,$\therefore O$,$D$,$C$三点共线。$\because \angle AOD = \angle DOB = 60^{\circ}$,$OD = OB$,$\therefore \triangle OBD$是等边三角形,$\therefore \angle BDO = 60^{\circ}$。$\because DC = DB$,$\therefore \angle DCB = \angle DBC = 30^{\circ}$,$\therefore \angle OBC = 90^{\circ}$,$\therefore BC = 2\sqrt{3}$。
16. 如图,CD是$\odot O$的直径,点A是半圆上的三等分点,点B是$\overset{\frown}{AD}$的中点,点P为直线CD上的一个动点,当$CD = 4$时,求:
(1)$AP + BP$的最小值;
(2)$AP - BP$的最大值.

(1)$AP + BP$的最小值;
(2)$AP - BP$的最大值.
答案:
(1)如图①,作点A关于CD的对称点$A'$,连接$A'B$,交CD于点P,此时$PA + PB$最小,连接OA,AP,OB,$OA'$,$AA'$。$\because$点A与$A'$关于CD对称,点A是半圆上的一个三等分点,$\therefore \angle A'OD = \angle AOD = 60^{\circ}$,$PA = PA'$。$\because$点B是$\overset{\frown}{AD}$的中点,$\therefore \angle BOD = 30^{\circ}$,$\therefore \angle A'OB = \angle A'OD + \angle BOD = 90^{\circ}$。又$OA = OA' = OB = 2$,$\therefore A'B = 2\sqrt{2}$,$\therefore AP + BP$的最小值即为$A'P + BP = A'B = 2\sqrt{2}$。


(2)由三角形的三边关系可知,当A,B,P三点共线时,$AP - BP$有最大值AB,如图②,连接AO,BO,AB,过点A作$AN\perp OB$,垂足为N。$\because CD$是$\odot O$的直径,点A是半圆上的三等分点,点B是$\overset{\frown}{AD}$的中点,$CD = 4$,$\therefore \angle AOB = 30^{\circ}$,$AN = \frac{1}{2}AO = 1$,$\therefore ON = \sqrt{3}$,$BN = 2 - \sqrt{3}$,$\therefore AP - BP$的最大值为$AB = \sqrt{1^{2}+(2 - \sqrt{3})^{2}} = \sqrt{8 - 4\sqrt{3}} = \sqrt{6 - 4\sqrt{3} + 2} = \sqrt{6} - \sqrt{2}$。
(1)如图①,作点A关于CD的对称点$A'$,连接$A'B$,交CD于点P,此时$PA + PB$最小,连接OA,AP,OB,$OA'$,$AA'$。$\because$点A与$A'$关于CD对称,点A是半圆上的一个三等分点,$\therefore \angle A'OD = \angle AOD = 60^{\circ}$,$PA = PA'$。$\because$点B是$\overset{\frown}{AD}$的中点,$\therefore \angle BOD = 30^{\circ}$,$\therefore \angle A'OB = \angle A'OD + \angle BOD = 90^{\circ}$。又$OA = OA' = OB = 2$,$\therefore A'B = 2\sqrt{2}$,$\therefore AP + BP$的最小值即为$A'P + BP = A'B = 2\sqrt{2}$。
(2)由三角形的三边关系可知,当A,B,P三点共线时,$AP - BP$有最大值AB,如图②,连接AO,BO,AB,过点A作$AN\perp OB$,垂足为N。$\because CD$是$\odot O$的直径,点A是半圆上的三等分点,点B是$\overset{\frown}{AD}$的中点,$CD = 4$,$\therefore \angle AOB = 30^{\circ}$,$AN = \frac{1}{2}AO = 1$,$\therefore ON = \sqrt{3}$,$BN = 2 - \sqrt{3}$,$\therefore AP - BP$的最大值为$AB = \sqrt{1^{2}+(2 - \sqrt{3})^{2}} = \sqrt{8 - 4\sqrt{3}} = \sqrt{6 - 4\sqrt{3} + 2} = \sqrt{6} - \sqrt{2}$。
查看更多完整答案,请扫码查看