2025年轻松作业本八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册苏科版》

15. 如图,在$\triangle ABC和\triangle AEF$中,$AB= AC$,$AE= AF$,$∠CAB= ∠EAF$。$BE交FC于点O$,交$AC于点D$。
(1)求证:$BE= CF$;
(2)当$∠BAC= 70^{\circ}$时,求$∠BOC$的度数。
(1) 证明:$\because \angle CAB = \angle EAF$,$\therefore \angle CAB + \angle CAE = \angle EAF + \angle CAE$。$\therefore \angle BAE = \angle CAF$。在$\triangle BAE$和$\triangle CAF$中,$\begin{cases} AB = AC, \\ \angle BAE = \angle CAF, \\ AE = AF. \end{cases}$ $\therefore \triangle BAE \cong \triangle CAF(SAS)$。
$\therefore BE = CF$;
(2) 解:$\because \triangle BAE \cong \triangle CAF$,$\therefore \angle EBA = \angle FCA$,即$\angle DBA = \angle OCD$。$\because \angle BDA = \angle ODC$,
$\therefore \angle BAD = \angle COD$。$\because \angle BAC = 70^{\circ}$,$\therefore \angle BAD = 70^{\circ}$。
$\therefore \angle COD = 70^{\circ}$,即$\angle BOC = $
70°
答案:
(1) 证明:$\because \angle CAB = \angle EAF$,$\therefore \angle CAB + \angle CAE = \angle EAF + \angle CAE$。$\therefore \angle BAE = \angle CAF$。在$\triangle BAE$和$\triangle CAF$中,$\begin{cases} AB = AC, \\ \angle BAE = \angle CAF, \\ AE = AF. \end{cases}$ $\therefore \triangle BAE \cong \triangle CAF(SAS)$。
$\therefore BE = CF$;
(2) 解:$\because \triangle BAE \cong \triangle CAF$,$\therefore \angle EBA = \angle FCA$,即$\angle DBA = \angle OCD$。$\because \angle BDA = \angle ODC$,
$\therefore \angle BAD = \angle COD$。$\because \angle BAC = 70^{\circ}$,$\therefore \angle BAD = 70^{\circ}$。
$\therefore \angle COD = 70^{\circ}$,即$\angle BOC = 70^{\circ}$。
16. 如图,在$\triangle ABC$中,点$D在边AC$上,$DB= BC$,$E是CD$的中点,$F是AB$的中点。求证:$EF= \frac{1}{2}AB$。
证明:
连接$BE$,在$\triangle BCD$中,$DB = BC$,$E$是$CD$的中点,$\therefore BE \perp CD$。在$Rt\triangle ABE$中,$EF$是斜边$AB$上的中线,$\therefore EF = \frac{1}{2}AB$。
答案: 证明:连接$BE$,在$\triangle BCD$中,$DB = BC$,$E$是$CD$的中点,$\therefore BE \perp CD$。在$Rt\triangle ABE$中,$EF$是斜边$AB$上的中线,$\therefore EF = \frac{1}{2}AB$。
17. (2024·南充)如图,在$\triangle ABC$中,点$D为BC$边的中点,过点$B作BE// AC交AD的延长线于点E$。
(1)求证:$\triangle BDE\cong \triangle CDA$;
证明:$\because$点$D$为$BC$的中点,$\therefore BD = CD$。$\because BE // AC$,$\therefore \angle EBD = \angle C$,$\angle E = \angle CAD$,在$\triangle BDE$和$\triangle CDA$中,$\begin{cases} \angle EBD = \angle C, \\ \angle E = \angle CAD, \\ BD = CD, \end{cases}$ $\therefore \triangle BDE \cong \triangle CDA$(
AAS
);
(2)若$AD⊥BC$,求证:$BA= BE$。
证明:$\because$点$D$为$BC$的中点,$AD \perp BC$,$\therefore$直线$AD$为线段$BC$的垂直平分线。$\therefore BA = CA$。由(1)可知:$\triangle BDE \cong \triangle CDA$,$\therefore BE = CA$。$\therefore BA = BE$。
答案: 证明:
(1) $\because$点$D$为$BC$的中点,$\therefore BD = CD$。$\because BE // AC$,$\therefore \angle EBD = \angle C$,$\angle E = \angle CAD$,在$\triangle BDE$和$\triangle CDA$中,$\begin{cases} \angle EBD = \angle C, \\ \angle E = \angle CAD, \\ BD = CD, \end{cases}$ $\therefore \triangle BDE \cong \triangle CDA(AAS)$;
(2) $\because$点$D$为$BC$的中点,$AD \perp BC$,$\therefore$直线$AD$为线段$BC$的垂直平分线。
$\therefore BA = CA$。由
(1)可知:$\triangle BDE \cong \triangle CDA$,$\therefore BE = CA$。
$\therefore BA = BE$。
18. 如图,直线$a$、$b相交于点A$,$C$、$E分别是直线b$、$a$上的点,且$BC⊥a$,$DE⊥b$,点$M$、$N分别是EC$、$DB$的中点。求证:
(1)$MD= MB$;
(2)$MN⊥BD$。
答案: 证明:
(1) $\because BC \perp a$,$DE \perp b$,$\therefore \angle CDE = \angle CBE = 90^{\circ}$。$\therefore \triangle CBE$、$\triangle CDE$为直角三角形。$\because$点$M$是$EC$中点,$\therefore DM = BM = \frac{1}{2}EC$。$\therefore DM = BM$;
(2) $\because DM = BM$,$\therefore \triangle MDB$为等腰三角形。又$\because N$为$BD$的中点,$\therefore MN$为$BD$边上的中线。$\therefore MN \perp BD$(三线合一)。
19. 如图,$AD为线段BC$的垂直平分线,在线段$AD上取一点E$,使得$∠ACE= 20^{\circ}$,在线段$CE上取一点F$,使得$∠FBC= 10^{\circ}$,连接$BE$、$AF$。若$∠ABC= 50^{\circ}$,求证:$BE⊥AF$。
证明:$\because AD$为线段$BC$的垂直平分线,$\therefore AB = AC$,$EB = EC$,$\angle ADB = 90^{\circ}$。$\therefore \angle ABC = \angle ACB = 50^{\circ}$,$\angle EBC = \angle ECB$。
$\therefore \angle ACE = \angle ABE$。$\because \angle ACE = 20^{\circ}$,$\angle FBC = 10^{\circ}$,
$\therefore \angle ABE = 20^{\circ}$。$\therefore \angle FBE = \angle ABC - \angle ABE - \angle FBC = 50^{\circ} - 20^{\circ} - 10^{\circ} = 20^{\circ}$。$\therefore \angle EBC = \angle FBE + \angle FBC = 20^{\circ} + 10^{\circ} = 30^{\circ}$。$\therefore \angle ABF = \angle ABE + \angle FBE = 40^{\circ}$,$\angle ABE = \angle FBE$。$\because \angle BAE = 90^{\circ} - \angle ABD = 40^{\circ}$,$\angle BFE = \angle FBC + \angle FCB = \angle FBC + \angle ECB = 10^{\circ} + 30^{\circ} = 40^{\circ}$,$\therefore \angle BAE =$
$\angle BFE$。在$\triangle ABE$和$\triangle FBE$中,$\begin{cases} \angle ABE = \angle FBE, \\ \angle BAE = \angle BFE, \\ BE = BE. \end{cases}$
$\therefore \triangle ABE \cong \triangle FBE$(
AAS
)。$\therefore BA = BF$。$\therefore \triangle BAF$是等腰三角形。$\because \angle ABE = \angle FBE$,$\therefore BE$是$\triangle BAF$的顶角的角平分线。$\therefore BE \perp AF$。
答案: 证明:$\because AD$为线段$BC$的垂直平分线,$\therefore AB = AC$,$EB = EC$,$\angle ADB = 90^{\circ}$。$\therefore \angle ABC = \angle ACB = 50^{\circ}$,$\angle EBC = \angle ECB$。
$\therefore \angle ACE = \angle ABE$。$\because \angle ACE = 20^{\circ}$,$\angle FBC = 10^{\circ}$,
$\therefore \angle ABE = 20^{\circ}$。$\therefore \angle FBE = \angle ABC - \angle ABE - \angle FBC = 50^{\circ} - 20^{\circ} - 10^{\circ} = 20^{\circ}$。$\therefore \angle EBC = \angle FBE + \angle FBC = 20^{\circ} + 10^{\circ} = 30^{\circ}$。$\therefore \angle ABF = \angle ABE + \angle FBE = 40^{\circ}$,$\angle ABE = \angle FBE$。$\because \angle BAE = 90^{\circ} - \angle ABD = 40^{\circ}$,$\angle BFE = \angle FBC + \angle FCB = \angle FBC + \angle ECB = 10^{\circ} + 30^{\circ} = 40^{\circ}$,$\therefore \angle BAE =$
$\angle BFE$。在$\triangle ABE$和$\triangle FBE$中,$\begin{cases} \angle ABE = \angle FBE, \\ \angle BAE = \angle BFE, \\ BE = BE. \end{cases}$
$\therefore \triangle ABE \cong \triangle FBE(AAS)$。$\therefore BA = BF$。$\therefore \triangle BAF$是等腰三角形。$\because \angle ABE = \angle FBE$,$\therefore BE$是$\triangle BAF$的顶角的角平分线。$\therefore BE \perp AF$。

查看更多完整答案,请扫码查看

关闭