2025年轻松作业本八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册苏科版》

8. 如图,在$△ABC$中,$∠B= 50^{\circ },CD⊥AB$于点D,$∠BCD和∠BDC$的角平分线相交于点E,F为边AC的中点,$CD= CF$,则$∠ACD+∠CED$等于(
C
)

A. $125^{\circ }$
B. $145^{\circ }$
C. $175^{\circ }$
D. $190^{\circ }$
答案: C
9. 如图,AD是$△ABC$的角平分线,$DE⊥AC$,垂足为E,$BF// AC$交ED的延长线于点F,若BC恰好平分$∠ABF,AE= 2BF$.有下列四个结论:①$DE= DF$;②$DB= DC$;③$AD⊥BC$;④$AB= 3BF$.其中正确的结论有(
A
)

A. 4个
B. 3个
C. 2个
D. 1个
答案: A
10. 如图,在$Rt△ABC$中,$∠ACB= 90^{\circ }$,D为AB的中点,$∠B= 30^{\circ }$,点E在BC上,且$CE= AC$,则$∠CDE$的大小为______
75
$^{\circ }$.
答案: 75
11. 如图,长方形ABCD中,$AB= 9,AD= 4$.E为CD边上一点,$CE= 6$.点P从点B出发,以每秒1个单位长度的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.当$t= $
3 或 4 或 $\frac{29}{6}$
秒时,$△PAE$是等腰三角形.
答案: 3 或 4 或 $\frac{29}{6}$
12. 如图,在$△ABC$中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,$DG⊥CE$于点G.求证:$∠B= 2∠BCE$.
证明:连接
DE
。$\because G$ 是 $CE$ 的中点,$DG \perp CE$,$\therefore DG$ 是 $CE$ 的垂直平分线。$\therefore$
DE=DC
。$\therefore$
∠DEC=∠DCE
。$\because$
∠BDE=∠DEC+∠DCE
,$\therefore \angle BDE = 2\angle BCE$。$\because CE$ 是边 $AB$ 上的中线,$\therefore E$ 是 $BA$ 中点,即
AE=BE
。在 $Rt\triangle ABD$ 中,
DE=AE=BE
。$\therefore$
∠BDE=∠B
。$\therefore \angle B = 2\angle BCE$。
答案: 证明:连接 $DE$。$\because G$ 是 $CE$ 的中点,$DG \perp CE$,$\therefore DG$ 是 $CE$ 的垂直平分线。$\therefore DE = DC$。$\therefore \angle DEC = \angle DCE$。$\because \angle BDE = \angle DEC + \angle DCE$,$\therefore \angle BDE = 2\angle BCE$。$\because CE$ 是边 $AB$ 上的中线,$\therefore E$ 是 $BA$ 中点,即 $AE = BE$。在 $Rt\triangle ABD$ 中,$DE = AE = BE$。$\therefore \angle BDE = \angle B$。$\therefore \angle B = 2\angle BCE$。
13. 如图,在$△ABC$中,CE、BD分别是AB、AC边上的高线,M是BC的中点,连接DE、EM、MD.
(1)求证:$ME= MD$;
(2)若$∠A= 45^{\circ }$,求$∠EDM$的度数.

(1)证明:$\because CE$、$BD$ 分别是 $AB$、$AC$ 边上的高线,$\therefore \angle BEC = \angle CDB = 90^{\circ}$。$\because M$ 是 $BC$ 的中点,$\therefore EM = \frac{1}{2}BC$,$DM = \frac{1}{2}BC$。$\therefore ME = MD$;
(2)解:$\because \angle A = 45^{\circ}$,$\therefore \angle ABC + \angle ACB = 135^{\circ}$。$\because EM = BM$,$DM = CM$,$\therefore \angle BEM = \angle ABC$,$\angle MDC = \angle ACB$。$\therefore \angle EBM + \angle BEM + \angle ACB + \angle MDC = 135^{\circ} × 2 = 270^{\circ}$。$\therefore \angle EMB + \angle DMC = 180^{\circ} × 2 - 270^{\circ} = 90^{\circ}$。$\therefore \angle EMD = 90^{\circ}$。$\because ME = MD$,$\therefore \angle EDM =$
$45^{\circ}$
答案: (1)证明:$\because CE$、$BD$ 分别是 $AB$、$AC$ 边上的高线,$\therefore \angle BEC = \angle CDB = 90^{\circ}$。$\because M$ 是 $BC$ 的中点,$\therefore EM = \frac{1}{2}BC$,$DM = \frac{1}{2}BC$。$\therefore ME = MD$;
(2)解:$\because \angle A = 45^{\circ}$,$\therefore \angle ABC + \angle ACB = 135^{\circ}$。$\because EM = BM$,$DM = CM$,$\therefore \angle BEM = \angle ABC$,$\angle MDC = \angle ACB$。$\therefore \angle EBM + \angle BEM + \angle ACB + \angle MDC = 135^{\circ} \times 2 = 270^{\circ}$。$\therefore \angle EMB + \angle DMC = 180^{\circ} \times 2 - 270^{\circ} = 90^{\circ}$。$\therefore \angle EMD = 90^{\circ}$。$\because ME = MD$,$\therefore \angle EDM = 45^{\circ}$。

查看更多完整答案,请扫码查看

关闭