2025年轻松作业本八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册苏科版》

1. 如图,在四边形ABCD中,$∠BCD= 90^{\circ },AB⊥BD$于点B,点E是BD的中点,连接AE、CE,则AE与CE的大小关系是(
C
)

A. $AE<CE$
B. $AE= CE$
C. $AE>CE$
D. $AE= 2CE$
答案: C
2. 如图,一架梯子AB斜靠在竖直墙上,点M为梯子AB的中点,当梯子底端向左水平滑动到CD位置时,滑动过程中OM的变化规律是(
B
)

A. 变小
B. 不变
C. 变大
D. 先变小再变大
答案: B
3. 如图,在$Rt△ABC$中,CD是斜边AB上的中线,$∠A= 20^{\circ }$,则$∠BCD$的度数是
$70^{\circ}$

答案: $70^{\circ}$
4. 如图,$△ABC$中,$AB= 5,AC= 8$,BD、CD分别平分$∠ABC$、$∠ACB$,过点D作直线$EF// BC$,分别交AB、AC于E、F,则$△AEF$的周长为______
13

答案: 13
5. 如图,在$△ABC$中,$AB= AC$,D为BC边上一点,$∠B= 30^{\circ },∠DAB= 45^{\circ }$.
(1)求$∠DAC$的度数;
解:$\because AB = AC$,$\therefore \angle B = \angle C = 30^{\circ}$。$\because \angle C + \angle BAC + \angle B = 180^{\circ}$,$\therefore \angle BAC = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$。$\because \angle DAB = 45^{\circ}$,$\therefore \angle DAC = \angle BAC - \angle DAB = 120^{\circ} - 45^{\circ} =$
75°

(2)求证:$DC= AB$.
证明:$\because \angle DAB = 45^{\circ}$,$\therefore \angle ADC = \angle B + \angle DAB =$
75°
。$\therefore \angle DAC = \angle ADC$。$\therefore DC =$
AC
。$\therefore DC = AB$。
答案: (1)解:$\because AB = AC$,$\therefore \angle B = \angle C = 30^{\circ}$。$\because \angle C + \angle BAC + \angle B = 180^{\circ}$,$\therefore \angle BAC = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$。$\because \angle DAB = 45^{\circ}$,$\therefore \angle DAC = \angle BAC - \angle DAB = 120^{\circ} - 45^{\circ} = 75^{\circ}$;
(2)证明:$\because \angle DAB = 45^{\circ}$,$\therefore \angle ADC = \angle B + \angle DAB = 75^{\circ}$。$\therefore \angle DAC = \angle ADC$。$\therefore DC = AC$。$\therefore DC = AB$。
6. 如图,在$△ABC$中,$∠B= 90^{\circ },AB= BC,BD= CE$,M是AC边上的中点.求证:$△DEM$是等腰三角形.
证明:连接
BM
,$\because \angle B = 90^{\circ}$,$AB =$
BC
,$\therefore BM = \frac{1}{2}AC = AM = MC$,$\angle A = \angle C = 45^{\circ}$,$\angle ABM = \angle CBM = 45^{\circ}$。又 $\because BD = CE$,$\therefore \triangle DBM \cong \triangle ECM$(
SAS
)。$\therefore$
DM = EM
。$\therefore \triangle DEM$ 是等腰三角形。
答案: 证明:连接 $BM$,$\because \angle B = 90^{\circ}$,$AB = AC$,$\therefore BM = \frac{1}{2}AC = AM = MC$,$\angle A = \angle C = 45^{\circ}$,$\angle ABM = \angle CBM = 45^{\circ}$。又 $\because BD = CE$,$\therefore \triangle DBM \cong \triangle ECM(SAS)$。$\therefore DM = EM$。$\therefore \triangle DEM$ 是等腰三角形。
7. 如图,在$△ABC$中,$∠C= ∠B,AD⊥BC$,垂足为D,$DE// AB$交AC于点E,若$DE+DC= 4.5$,则$AC+BC$的值为(
C
)

A. 7.5
B. 8
C. 9
D. 9.5
答案: C

查看更多完整答案,请扫码查看

关闭