第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
9. 如图,$AB⊥CD$,且$AB= CD$. E、F是AD上两点,$CE⊥AD,BF⊥AD$. 若$CE= a,BF= b$,$EF= c$,则AD的长为 (

A. $a+c$
B. $b+c$
C. $a-b+c$
D. $a+b-c$
D
)A. $a+c$
B. $b+c$
C. $a-b+c$
D. $a+b-c$
答案:
D
10. 如图,$CA⊥BC$,垂足为C,$AC= 3cm,BC= 9cm$,射线$BM⊥BQ$,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足$PN= AB$,随着点P运动而运动,当点P运动______
0或6或12或18
秒时,$\triangle BCA$与点P、N、B为顶点的三角形全等.
答案:
0或6或12或18
11. 如图,在$\triangle ABC和\triangle ADE$中,有以下四个论断:①$AB= AD$;②$∠B= ∠ADE$;③$∠C= ∠E$;④$BC= DE$. 请以其中三个论断为条件,余下一个论断为结论,写出一个正确的命题:______

$ ②③④ \Rightarrow ① $
(用序号“$\otimes \otimes \otimes \Rightarrow \otimes$”的形式写出).
答案:
$ ②③④ \Rightarrow ① $
12. 如图,$CB⊥AD,AE⊥DC$,垂足分别B、E,AE、BC相交于点F,且$AB= BC$. 求证:$AF= CD$.
证明:$ \because C B \perp A D $,$ \therefore \angle A B C = \angle C B D = 90 ^ { \circ } $. $ \therefore \angle C + \angle D = 90 ^ { \circ } $. $ \because A E \perp D C $,$ \therefore \angle A + \angle D = 90 ^ { \circ } $. $ \therefore \angle A = \angle C $. 在$ \triangle A B F $和$ \triangle C B D $中,$ \left\{ \begin{array} { l } { \angle A = \angle C, } \\ { A B = B C, } \\ { \angle A B F = \angle C B D, } \end{array} \right. $ $ \therefore \triangle A B F \cong \triangle C B D $(
证明:$ \because C B \perp A D $,$ \therefore \angle A B C = \angle C B D = 90 ^ { \circ } $. $ \therefore \angle C + \angle D = 90 ^ { \circ } $. $ \because A E \perp D C $,$ \therefore \angle A + \angle D = 90 ^ { \circ } $. $ \therefore \angle A = \angle C $. 在$ \triangle A B F $和$ \triangle C B D $中,$ \left\{ \begin{array} { l } { \angle A = \angle C, } \\ { A B = B C, } \\ { \angle A B F = \angle C B D, } \end{array} \right. $ $ \therefore \triangle A B F \cong \triangle C B D $(
ASA
). $ \therefore A F = C D $.
答案:
证明:$ \because C B \perp A D $,$ \therefore \angle A B C = \angle C B D = 90 ^ { \circ } $. $ \therefore \angle C + \angle D = 90 ^ { \circ } $. $ \because A E \perp D C $,$ \therefore \angle A + \angle D = 90 ^ { \circ } $. $ \therefore \angle A = \angle C $. 在$ \triangle A B F $和$ \triangle C B D $中,$ \left\{ \begin{array} { l } { \angle A = \angle C, } \\ { A B = B C, } \\ { \angle A B F = \angle C B D, } \end{array} \right. $ $ \therefore \triangle A B F \cong \triangle C B D ( \mathrm { ASA } ) $. $ \therefore A F = C D $.
13. 如图,在四边形ABCD中,$∠ABC= 90^{\circ },AD// BC,AB= BC$,E是AB的中点,$CE⊥BD$. 求证:
(1)$\triangle ABD\cong \triangle BCE$(
(2)$AE= AD$.
证明:(1)$ \because A D // B C $,$ \therefore \angle A B C + \angle B A D = 180 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ \therefore \angle B A D = 90 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ B D \perp E C $,$ \therefore \angle B C E + \angle C B D = 90 ^ { \circ } $,$ \angle A B D + \angle C B D = 90 ^ { \circ } $. $ \therefore \angle A B D = \angle B C E $. 在$ \triangle A B D $和$ \triangle B C E $中,$ \left\{ \begin{array} { l } { \angle A B D = \angle B C E, } \\ { A B = B C, } \\ { \angle B A D = \angle C B E = 90 ^ { \circ }. } \end{array} \right. $ $ \therefore \triangle A B D \cong \triangle B C E $;(2)由(1)知,$ \triangle A B D \cong \triangle B C E $,$ \therefore A D = B E $. $ \because E $是$ A B $的中点,$ \therefore A E = B E $. $ \therefore A D = A E $.
(1)$\triangle ABD\cong \triangle BCE$(
ASA
);(2)$AE= AD$.
证明:(1)$ \because A D // B C $,$ \therefore \angle A B C + \angle B A D = 180 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ \therefore \angle B A D = 90 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ B D \perp E C $,$ \therefore \angle B C E + \angle C B D = 90 ^ { \circ } $,$ \angle A B D + \angle C B D = 90 ^ { \circ } $. $ \therefore \angle A B D = \angle B C E $. 在$ \triangle A B D $和$ \triangle B C E $中,$ \left\{ \begin{array} { l } { \angle A B D = \angle B C E, } \\ { A B = B C, } \\ { \angle B A D = \angle C B E = 90 ^ { \circ }. } \end{array} \right. $ $ \therefore \triangle A B D \cong \triangle B C E $;(2)由(1)知,$ \triangle A B D \cong \triangle B C E $,$ \therefore A D = B E $. $ \because E $是$ A B $的中点,$ \therefore A E = B E $. $ \therefore A D = A E $.
答案:
证明:(1)$ \because A D // B C $,$ \therefore \angle A B C + \angle B A D = 180 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ \therefore \angle B A D = 90 ^ { \circ } $. $ \because \angle A B C = 90 ^ { \circ } $,$ B D \perp E C $,$ \therefore \angle B C E + \angle C B D = 90 ^ { \circ } $,$ \angle A B D + \angle C B D = 90 ^ { \circ } $. $ \therefore \angle A B D = \angle B C E $. 在$ \triangle A B D $和$ \triangle B C E $中,$ \left\{ \begin{array} { l } { \angle A B D = \angle B C E, } \\ { A B = B C, } \\ { \angle B A D = \angle C B E = 90 ^ { \circ }. } \end{array} \right. $ $ \therefore \triangle A B D \cong \triangle B C E ( \mathrm { ASA } ) $;(2)由(1)知,$ \triangle A B D \cong \triangle B C E $,$ \therefore A D = B E $. $ \because E $是$ A B $的中点,$ \therefore A E = B E $. $ \therefore A D = A E $.
查看更多完整答案,请扫码查看