2025年轻松作业本八年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册苏科版》

8. 如图,已知$BE⊥AD$,$CF⊥AD$,垂足分别为$E$、$F$,则在下列条件中选择一组,可以判定$Rt△ABE≌Rt△DCF$的是
①②③
(填序号):①$AB= DC$,$∠B= ∠C$;②$AB= DC$,$AB// CD$;③$AB= DC$,$BE= CF$;④$AB= DF$,$BE= CF$。
答案: ①②③
9. 如图,正方形网格中,点$A$、$B$、$C$、$D$均在格点上,则$∠ACD+∠BDC= $
90
°。
答案: 90
10. 如图,在四边形$ABCD$中,$CB= CD$,对角线$AC平分∠BAD$。若$∠ACB= 90^{\circ}$,$∠ACD= 40^{\circ}$,则$∠B$的度数是
65
°。
答案: 65
11. 证明:斜边上高线和一直角边分别相等的两个直角三角形全等。
已知:如图,在$Rt△ABC和Rt△A'B'C'$中,$∠ACB= ∠A'C'B'= 90^{\circ}$,$CD⊥AB$,$C'D'⊥A'B'$,垂足分别为$D$、$D'$,且$AC= A'C'$,$CD= C'D'$。求证:$Rt△ABC≌Rt△A'B'C'$。
证明:$\because CD、C'D'$分别是$\triangle ABC$和$\triangle A'B'C'$的高,
$\therefore CD⊥AB,C'D'⊥A'B'.$
$\therefore \triangle ACD$和$\triangle A'C'D'$为直角三角形.
$\because Rt\triangle ACD$和$Rt\triangle A'C'D'$中,$\left\{\begin{array}{l} AC=A'C',\\ CD=C'D',\end{array}\right. $
$\therefore Rt\triangle ACD\cong Rt\triangle A'C'D'$(
HL
).
$\therefore ∠CAB=∠C'A'B'.$
$\because Rt\triangle ABC$和$Rt\triangle A'B'C'$中,$\left\{\begin{array}{l} ∠CAB=∠C'A'B',\\ AC=A'C',\\ ∠ACB=∠A'C'B',\end{array}\right. $
$\therefore Rt\triangle ABC\cong Rt\triangle A'B'C'$(
ASA
).
答案: 证明:$\because CD、C'D'$分别是$\triangle ABC$和$\triangle A'B'C'$的高,
$\therefore CD⊥AB,C'D'⊥A'B'.$
$\therefore \triangle ACD$和$\triangle A'C'D'$为直角三角形.
$\because Rt\triangle ACD$和$Rt\triangle A'C'D'$中,$\left\{\begin{array}{l} AC=A'C',\\ CD=C'D',\end{array}\right. $
$\therefore Rt\triangle ACD\cong Rt\triangle A'C'D'(HL).$
$\therefore ∠CAB=∠C'A'B'.$
$\because Rt\triangle ABC$和$Rt\triangle A'B'C'$中,$\left\{\begin{array}{l} ∠CAB=∠C'A'B',\\ AC=A'C',\\ ∠ACB=∠A'C'B',\end{array}\right. $
$\therefore Rt\triangle ABC\cong Rt\triangle A'B'C'(ASA).$
12. 如图,$AC⊥BC$,$AD⊥BD$,$AD= BC$,$CE⊥AB$,$DF⊥AB$,垂足分别是$E$、$F$,$CE= DF$吗?请说明理由。

解:$CE=DF$. 理由:
在$Rt\triangle ABC$和$Rt\triangle BAD$中,$\left\{\begin{array}{l} AD=BC,\\ AB=BA,\end{array}\right. $
$\therefore Rt\triangle ABC\cong Rt\triangle BAD$(
HL
).
$\therefore AC=BD,∠CAB=∠DBA$. 在$\triangle ACE$和$\triangle BDF$中,$\left\{\begin{array}{l} ∠CAB=∠DBA,\\ ∠AEC=∠BFD=90^{\circ },\\ AC=BD,\end{array}\right. $
$\therefore \triangle ACE\cong \triangle BDF$(
AAS
).
$\therefore CE=DF.$
答案: 解:$CE=DF$. 理由:
在$Rt\triangle ABC$和$Rt\triangle BAD$中,$\left\{\begin{array}{l} AD=BC,\\ AB=BA,\end{array}\right. $
$\therefore Rt\triangle ABC\cong Rt\triangle BAD(HL).$
$\therefore AC=BD,∠CAB=∠DBA$. 在$\triangle ACE$和$\triangle BDF$中,$\left\{\begin{array}{l} ∠CAB=∠DBA,\\ ∠AEC=∠BFD=90^{\circ },\\ AC=BD,\end{array}\right. $
$\therefore \triangle ACE\cong \triangle BDF(AAS).$
$\therefore CE=DF.$
13. 如图,已知$BE⊥AC于点E$,$CF⊥AB于点F$,$BE$、$CF相交于点D$,若$BF= CE$。
求证:$AE= AF$。
证明:$\because BE⊥AC,CF⊥AB,$
$\therefore ∠BFD=∠CED=90^{\circ }$. 在$\triangle BFD$和$\triangle CED$中,$\left\{\begin{array}{l} ∠BFD=∠CED=90^{\circ },\\ ∠BDF=∠CDE,\\ BF=CE,\end{array}\right. $
$\therefore \triangle BFD\cong \triangle CED$(
AAS
).
$\therefore DE=DF$. 在$Rt\triangle ADE$和$Rt\triangle ADF$中,$\left\{\begin{array}{l} AD=AD,\\ DE=DF,\end{array}\right. $
$\therefore Rt\triangle ADE\cong Rt\triangle ADF$(
HL
).
$\therefore AE=AF.$
答案: 证明:$\because BE⊥AC,CF⊥AB,$
$\therefore ∠BFD=∠CED=90^{\circ }$. 在$\triangle BFD$和$\triangle CED$中,$\left\{\begin{array}{l} ∠BFD=∠CED=90^{\circ },\\ ∠BDF=∠CDE,\\ BF=CE,\end{array}\right. $
$\therefore \triangle BFD\cong \triangle CED(AAS).$
$\therefore DE=DF$. 在$Rt\triangle ADE$和$Rt\triangle ADF$中,$\left\{\begin{array}{l} AD=AD,\\ DE=DF,\end{array}\right. $
$\therefore Rt\triangle ADE\cong Rt\triangle ADF(HL).$
$\therefore AE=AF.$

查看更多完整答案,请扫码查看

关闭