2025年思维新观察八年级数学上册人教版湖北专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年思维新观察八年级数学上册人教版湖北专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年思维新观察八年级数学上册人教版湖北专版》

8.如图,将$\triangle ABC绕点A旋转得到\triangle ADE$,若$\angle B = 40^{\circ}$,$\angle E = 30^{\circ}$,则$\angle DAE$的度数为(
B
)

A.$70^{\circ}$
B.$110^{\circ}$
C.$120^{\circ}$
D.$130^{\circ}$
答案: B
9.如图,已知$\triangle ABC\cong \triangle CDA$,则下列结论:①$AB = CD$,$BC = DA$;②$\angle BAC = \angle DCA$,$\angle ACB = \angle CAD$;③$AB// CD$,$BC// DA$.其中正确的有(
D
)

A.①
B.②
C.①②
D.①②③
答案: D
10.如图,$\triangle APE\cong \triangle BPF$,点$E$,$F分别在直线OA$,$OB$上,下列结论错误的是(
D
)

A.$PB = PA$
B.$\angle OBP+\angle A = 180^{\circ}$
C.$\angle BPA = \angle EPF$
D.$BF = PE$
答案: D
11.一个三角形的三边长分别为$2$,$5$,$x$,另一个三角形的三边长分别为$y$,$2$,$6$,若这两个三角形全等,则$x + y$的值为(
A
)
A.11
B.7
C.8
D.13
答案: A
12.(教材$P33T4$改编)如图,已知$\triangle ABC\cong \triangle DEF$,点$B$,$E$,$C$,$F$在同一条直线上.
(1)求证:$AC// DF$;
(2)求证:$BE = CF$.
答案: 证明:
(1)$\triangle ABC \cong \triangle DEF$,
$\therefore \angle ACB = \angle DFE$,
$\therefore AC // DF$;
(2)$\because BC = EF$,
$\therefore BC - CE = EF - CE$,
$\therefore BE = CF$。
13.如图,$\triangle CAD\cong \triangle CBE$,$BC\perp AC$,求证:$AD\perp BE$.

证明:
延长$AD$交$BE$于$M$点

$\because \triangle CAD \cong \triangle CBE$,
$\therefore$
$\angle A = \angle B$

$\because BC\perp AC$,$\therefore \angle BCA=90^{\circ}$,
在$\triangle ACN$和$\triangle BMN$中,$\angle ANC=\angle BNM$(对顶角相等),
$\therefore$
$\angle BMD = \angle BCA = 90^{\circ}$

$\therefore$
$AD \perp BE$
答案: 证明:延长$AD$交$BE$于$M$点,
$\because \triangle CAD \cong \triangle CBE$,
$\therefore \angle A = \angle B$,
$\therefore \angle BMD = \angle BCA = 90^{\circ}$,
$\therefore AD \perp BE$。
14.如图,$\triangle ABC\cong \triangle ADE$,$BC$,$DE相交于点O$.
(1)若$AB\perp AC$,$\angle DAC = 70^{\circ}$,求$\angle EOC$的大小;
解:$\angle BAD =
20^{\circ}
$,
又$\because \angle BAC = \angle DAE$,$\therefore \angle CAE =
20^{\circ}
$,
而$\triangle ABC \cong \triangle ADE$,$\angle C = \angle E$,
$\therefore \angle EOC = \angle CAE =
20^{\circ}
$;
(2)求证:$\angle EOC = \angle BAD$.
证明:$\because \triangle ABC \cong \triangle ADE$,
$\therefore \angle B = \angle D$,
$\therefore \angle BAD = \angle BOD = \angle EOC$。
答案: 解:
(1)$\angle BAD = 20^{\circ}$,
又$\because \angle BAC = \angle DAE$,$\therefore \angle CAE = 20^{\circ}$,
而$\triangle ABC \cong \triangle ADE$,$\angle C = \angle E$,
![img alt=14]
$\therefore \angle EOC = \angle CAE = 20^{\circ}$;
(2)$\because \triangle ABC \cong \triangle ADE$,
$\therefore \angle B = \angle D$,
$\therefore \angle BAD = \angle BOD = \angle EOC$。

查看更多完整答案,请扫码查看

关闭