第96页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
1. [2024 长沙模拟]下列各式中,能用平方差公式分解因式的是(
A.$a^{2}+b^{2}$
B.$-(a^{2}+b^{2})$
C.$-b^{2}+a^{2}$
D.$-a^{2}-b^{2}$
C
)A.$a^{2}+b^{2}$
B.$-(a^{2}+b^{2})$
C.$-b^{2}+a^{2}$
D.$-a^{2}-b^{2}$
答案:
1.C
2. 下列因式分解正确的是(
A.$4x^{2}-1=(4x+1)(4x-1)$
B.$-m^{2}+9=(m+3)(m-3)$
C.$x^{4}-16=(x^{2}-4)(x^{2}+4)$
D.$4-(2m-n)^{2}=(2+2m-n)(2-2m+n)$
D
)A.$4x^{2}-1=(4x+1)(4x-1)$
B.$-m^{2}+9=(m+3)(m-3)$
C.$x^{4}-16=(x^{2}-4)(x^{2}+4)$
D.$4-(2m-n)^{2}=(2+2m-n)(2-2m+n)$
答案:
2.D
3. 把多项式$1 - 4y^{2}$分解因式,结果正确的是(
A.$(1 - 2y)(1 + 2y)$
B.$(2 - y)(2 + y)$
C.$(1 - 2y)(2 + y)$
D.$(2y - 1)(1 + 2y)$
A
)A.$(1 - 2y)(1 + 2y)$
B.$(2 - y)(2 + y)$
C.$(1 - 2y)(2 + y)$
D.$(2y - 1)(1 + 2y)$
答案:
3.A
4. 分解因式:
(1)[2024 德州]$x^{2}-4=$
(2)[2024 无锡]$x^{2}-9=$
(3)[2024 淮安]$a^{2}-16=$
(4)[2024 临夏州]$x^{2}-\frac{1}{4}=$
(1)[2024 德州]$x^{2}-4=$
(x+2)(x-2)
;(2)[2024 无锡]$x^{2}-9=$
(x+3)(x-3)
;(3)[2024 淮安]$a^{2}-16=$
(a+4)(a-4)
;(4)[2024 临夏州]$x^{2}-\frac{1}{4}=$
(x+\frac{1}{2})(x-\frac{1}{2})
。
答案:
4.
(1)(x+2)(x-2)
(2)(x+3)(x-3)
$(3)(a+4)(a-4) (4)(x+\frac{1}{2})(x-\frac{1}{2})$
(1)(x+2)(x-2)
(2)(x+3)(x-3)
$(3)(a+4)(a-4) (4)(x+\frac{1}{2})(x-\frac{1}{2})$
5. [2023 嘉兴、舟山]一个多项式,把它因式分解后有一个因式为$x + 1$,请你写出一个符合条件的多项式:
x^{2}-1
。
答案:
$5.x^{2}-1($答案不唯一)
6. 分解因式:
(1)$25x^{2}-49y^{2}$;
(2)$-4x^{2}+1$;
(3)$(a + 2b)^{2}-(3a + b)^{2}$;
(4)$(2a + 1)^{2}-a^{2}$;
(5)$1 - x^{4}$;
(6)$(2x + y)^{2}-(x - 2y)^{2}$。
(1)$25x^{2}-49y^{2}$;
(2)$-4x^{2}+1$;
(3)$(a + 2b)^{2}-(3a + b)^{2}$;
(4)$(2a + 1)^{2}-a^{2}$;
(5)$1 - x^{4}$;
(6)$(2x + y)^{2}-(x - 2y)^{2}$。
答案:
6.解:
(1)原式=(5x+7y)(5x-7y).
(2)原式=(1+2x)(1-2x).
(3)原式=(4a+3b)(b-2a).
(4)原式=(3a+1)(a+1).
(5)原式$=(1+x^{2})(1+x)(1-x).$
(6)原式=(3x-y)(x+3y).
(1)原式=(5x+7y)(5x-7y).
(2)原式=(1+2x)(1-2x).
(3)原式=(4a+3b)(b-2a).
(4)原式=(3a+1)(a+1).
(5)原式$=(1+x^{2})(1+x)(1-x).$
(6)原式=(3x-y)(x+3y).
7. [2024 长沙模拟]若$m^{2}-n^{2}=-8$,$m - n=-2$,则代数式$m + n$的值是
4
。
答案:
7.4
8. 计算:
(1)$49.6^{2}-50.4^{2}=$
(2)$13.3^{2}-11.7^{2}=$
(1)$49.6^{2}-50.4^{2}=$
-80
;(2)$13.3^{2}-11.7^{2}=$
40
。
答案:
8.
(1)-80
(2)40
(1)-80
(2)40
9. 如图,在一块边长为$a$ m 的正方形空地的四角均留出一块边长为$b(b\lt\frac{a}{2})$m 的正方形区域修建花坛,其余的地方种植草坪。
(1)用含$a$,$b$的代数式表示草坪的面积;
(2)先对上述代数式进行因式分解,再计算当$a = 15$,$b = 2.5$时草坪的面积。

(1)用含$a$,$b$的代数式表示草坪的面积;
(2)先对上述代数式进行因式分解,再计算当$a = 15$,$b = 2.5$时草坪的面积。
答案:
9.解:
(1)草坪的面积为$(a^{2}-4b^{2})m^{2}.$
$(2)a^{2}-4b^{2}=(a+2b)(a-2b).$
当a=15,b=2.5时,
原式$=(15+5)×(15-5)=200(m^{2}).$
(1)草坪的面积为$(a^{2}-4b^{2})m^{2}.$
$(2)a^{2}-4b^{2}=(a+2b)(a-2b).$
当a=15,b=2.5时,
原式$=(15+5)×(15-5)=200(m^{2}).$
10. 因式分解:$16 - b^{4}=(4 + b^{2})(4 - b^{2})$,请问该结果是否正确?若不正确,请写出正确因式分解的结果。
答案:
10.解:该结果不正确,正确的结果应是$(4+b^{2})(2+b)(2-b).$
查看更多完整答案,请扫码查看