2025年课时A计划九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课时A计划九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课时A计划九年级数学上册人教版》

9. [与T3互为孪生题]如图,把$\triangle ABC$绕点C顺时针旋转$35^{\circ }$,得到$\triangle A'B'C,A'B'$交AC于点D.若$∠A'DC= 90^{\circ }$,则$∠A= $ (
B
)

A. $35^{\circ }$
B. $55^{\circ }$
C. $60^{\circ }$
D. $70^{\circ }$
答案: B
10. 如图,将$\triangle ABC$绕点C逆时针旋转$\alpha ^{\circ }后得到\triangle DEC$,点A,B的对应点分别为D,E,连接AD,BE,BE与CD交于点F,点A,B,F,E在同一条直线上.下列结论一定正确的是 (
D
)

A. $AB= DF$
B. $AB+BC= AE$
C. $BC// DE$
D. $∠BCE+∠CBE= ∠DEC$
答案: D
11. 在$\triangle ABC$中,$∠B= 45^{\circ },∠C= 60^{\circ }$,将$\triangle ABC$绕点A旋转$30^{\circ }后与\triangle AB_{1}C_{1}$重合,则$∠BAC_{1}$的度数为
$105^{\circ}$或$45^{\circ}$
.
答案: $105^{\circ}$或$45^{\circ}$
12. [2024·蚌埠三模]如图,在$Rt\triangle ABC$中,$∠ACB= 90^{\circ },AC= BC= 3\sqrt {2}$,将$\triangle ABC$绕点B顺时针旋转$60^{\circ }得到\triangle BDE$,连接CE,则CE的长为____
$3 + 3\sqrt{3}$
.
答案: $3 + 3\sqrt{3}$
13. 如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,点B与点E对应,点E恰好落在AD边上,$BH⊥CE$于点H.
(1)求证:$AB= BH$;
(2)连接BG交CE于点O,已知$AB= 5,BC= 13$,求BO的长.

(1)证明:易证$\triangle EDC \cong \triangle CHB$,$\therefore BH = CD$,$\because$四边形ABCD是矩形,$\therefore AB=CD$,$\therefore AB = BH$.
(2)
$\sqrt{61}$
答案: 解:
(1)易证$\triangle EDC \cong \triangle CHB$,
$\therefore BH = CD$,$\therefore AB = BH$.
(2)$BO = \sqrt{61}$.
14. [2023·合肥瑶海区期末]如图,在$\triangle ABC$中,$BC>AC,∠ACB= 90^{\circ }$,将$\triangle ABC$绕点A顺时针旋转$m^{\circ }得到\triangle ADE(∠CAB\lt m^{\circ }<180^{\circ })$,连接BD,CE,CE与AB交于点F.
(1)求证:$∠AEC= ∠ABD$;
(2)[基本思想—分类讨论思想]设$∠ABC= n^{\circ }$,当m,n满足什么条件时,$\triangle BCF$是等腰三角形?

(1)证明:易知$AE = AC$,$AD = AB$,$\angle BAD = \angle CAE = m^{\circ}$,$\therefore \angle AEC = \angle ACE = \frac{180^{\circ} - m^{\circ}}{2} = 90^{\circ} - \frac{m^{\circ}}{2}$,$\angle ABD = \angle ADB = \frac{180^{\circ} - m^{\circ}}{2} = 90^{\circ} - \frac{m^{\circ}}{2}$,$\therefore \angle AEC = \angle ABD$.
(2)当m,n满足
$m = 2n$或$m + n = 180$
时,$\triangle BCF$是等腰三角形.
答案: 解:
(1)易知$AE = AC$,$AD = AB$,$\angle BAD = \angle CAE = m^{\circ}$,
$\therefore \angle AEC = \angle ACE = \frac{180^{\circ} - m^{\circ}}{2} = 90^{\circ} - \frac{m^{\circ}}{2}$,
$\angle ABD = \angle ADB = \frac{180^{\circ} - m^{\circ}}{2} = 90^{\circ} - \frac{m^{\circ}}{2}$,
$\therefore \angle AEC = \angle ABD$.
(2)当$m$,$n$满足$m = 2n$或$m + n = 180$时,$\triangle BCF$是等腰三角形.

查看更多完整答案,请扫码查看

关闭