2025年1课3练江苏人民出版社八年级数学下册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1课3练江苏人民出版社八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第92页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
1 教材P125“议一议”·变式 下列式子中,是分式方程的是( ).
A. $\frac{1}{3x - 1} + \frac{4x}{3x + 1}$
B. $\frac{x^{2} + 1}{2} = \frac{5}{3}$
C. $\frac{2x}{2x - 1} - \frac{3}{2x + 1} = 1$
D. $\frac{3 - x}{4} + 2 = \frac{x + 4}{3}$
A. $\frac{1}{3x - 1} + \frac{4x}{3x + 1}$
B. $\frac{x^{2} + 1}{2} = \frac{5}{3}$
C. $\frac{2x}{2x - 1} - \frac{3}{2x + 1} = 1$
D. $\frac{3 - x}{4} + 2 = \frac{x + 4}{3}$
答案:
1.C
2 若方程$\frac{2 - x}{x - 5} = 2 + \frac{a}{x - 3}$的解为$x = 4$,则$a$等于( ).
A. 0
B. -2
C. 3
D. 4
A. 0
B. -2
C. 3
D. 4
答案:
2.A
3 已知关于$x$的分式方程$\frac{2x + m}{x - 2} = 3$的解是$x = 3$,则$m$的值为( ).
A. 3
B. -3
C. -1
D. 1
A. 3
B. -3
C. -1
D. 1
答案:
3.B
4 教材P128习题T2·改编 中考新考法 过程纠错 小明解分式方程$\frac{1}{x + 1} = \frac{2x}{3x + 3} - 1$的过程如下:
解:去分母,得$3 = 2x - (3x + 3)$,①
去括号,得$3 = 2x - 3x + 3$,②
移项、合并同类项,得$-x = 6$,③
系数化为1,得$x = -6$. ④
以上步骤中,最开始出错的一步是( ).
A. ①
B. ②
C. ③
D. ④
解:去分母,得$3 = 2x - (3x + 3)$,①
去括号,得$3 = 2x - 3x + 3$,②
移项、合并同类项,得$-x = 6$,③
系数化为1,得$x = -6$. ④
以上步骤中,最开始出错的一步是( ).
A. ①
B. ②
C. ③
D. ④
答案:
4.B
5 教材P126例1·拓展 当$2(a + 1)^{-1}$与$3(a - 2)^{-1}$的值相等时,则( ).
A. $a = -5$
B. $a = -6$
C. $a = -7$
D. $a = -8$
A. $a = -5$
B. $a = -6$
C. $a = -7$
D. $a = -8$
答案:
5.C
6 教材P127“议一议”·拓展 若关于$x$的方程$\frac{1}{x - 2} + 3 = \frac{1 - x}{2 - x}$和$\frac{x + 1}{x - |a|} = 2 - \frac{3}{|a| - x}$有相同的增根,则$a$的值为( ).
A. 2
B. 3
C. $\pm2$
D. $\pm3$
A. 2
B. 3
C. $\pm2$
D. $\pm3$
答案:
6.C
7 教材P127例2·改编 分式方程$\frac{3}{x - 2} = 1$的解是$x =$________.
答案:
7.5
8 代数式$\frac{3}{x + 2}$与代数式$\frac{2}{x - 1}$的值相等,则$x =$________.
答案:
8.7
9 教材P128习题T1·改编 解下列方程:
(1)$\frac{3}{x - 5} + \frac{4}{x + 5} = \frac{2}{x^{2} - 25}$;
(2)$\frac{1}{x} - \frac{1}{x + 2} = \frac{1}{x + 1} - \frac{1}{x + 3}$.
(1)$\frac{3}{x - 5} + \frac{4}{x + 5} = \frac{2}{x^{2} - 25}$;
(2)$\frac{1}{x} - \frac{1}{x + 2} = \frac{1}{x + 1} - \frac{1}{x + 3}$.
答案:
9.
(1)方程两边同乘$x^{2}-25$,得$3(x + 5)+4(x - 5)=2$,去括号,得$3x + 15+4x - 20=2$,
移项、合并同类项,得$7x = 7$,
系数化为1,得$x = 1$.
经检验,$x = 1$是原方程的解.
(2)方程两边分别通分,得$\frac{x + 2 - x}{x(x + 2)}=\frac{x + 3-(x + 1)}{(x + 1)(x + 3)}$,化简,得$\frac{1}{x(x + 2)}=\frac{1}{(x + 1)(x + 3)}$,
方程两边同乘$x(x + 1)(x + 2)(x + 3)$,得$(x + 1)\cdot(x + 3)=x(x + 2)$,
去括号,得$x^{2}+4x + 3=x^{2}+2x$,
移项、合并同类项,得$2x=-3$,
系数化为1,得$x=-\frac{3}{2}$.
经检验,$x=-\frac{3}{2}$是原方程的解.
(1)方程两边同乘$x^{2}-25$,得$3(x + 5)+4(x - 5)=2$,去括号,得$3x + 15+4x - 20=2$,
移项、合并同类项,得$7x = 7$,
系数化为1,得$x = 1$.
经检验,$x = 1$是原方程的解.
(2)方程两边分别通分,得$\frac{x + 2 - x}{x(x + 2)}=\frac{x + 3-(x + 1)}{(x + 1)(x + 3)}$,化简,得$\frac{1}{x(x + 2)}=\frac{1}{(x + 1)(x + 3)}$,
方程两边同乘$x(x + 1)(x + 2)(x + 3)$,得$(x + 1)\cdot(x + 3)=x(x + 2)$,
去括号,得$x^{2}+4x + 3=x^{2}+2x$,
移项、合并同类项,得$2x=-3$,
系数化为1,得$x=-\frac{3}{2}$.
经检验,$x=-\frac{3}{2}$是原方程的解.
查看更多完整答案,请扫码查看