2025年1课3练江苏人民出版社八年级数学下册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1课3练江苏人民出版社八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第49页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
8 (2024·福建福州台江区期中)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移的距离为4,则阴影部分的面积为 ________。

答案:
26 [解析]
∵两个直角三角形大小一样,
∴阴影部分的面积等于梯形ABEH的面积.由平移的性质,得DE = AB,BE = 4.
∵AB = 8,DH = 3,
∴HE = DE - DH = 8 - 3 = 5,
∴阴影部分的面积=$\frac{1}{2}$×(8 + 5)×4 = 26.
归纳总结 本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记平移的性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.
∵两个直角三角形大小一样,
∴阴影部分的面积等于梯形ABEH的面积.由平移的性质,得DE = AB,BE = 4.
∵AB = 8,DH = 3,
∴HE = DE - DH = 8 - 3 = 5,
∴阴影部分的面积=$\frac{1}{2}$×(8 + 5)×4 = 26.
归纳总结 本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记平移的性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.
9 (2024·江西上饶鄱阳二中月考)某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),升旗台的台阶和地毯的宽都为3米,台阶侧面如图所示。
(1)地毯至少需要多少米?
(2)若这种地毯的批发价为每平方米30元,则买地毯至少需要花费多少元?

(1)地毯至少需要多少米?
(2)若这种地毯的批发价为每平方米30元,则买地毯至少需要花费多少元?
答案:
9.
(1)如图,利用平移线段,把楼梯的横竖向上、向左、向右平移,构成一个长方形,长、宽分别为6.8米、2.4米,

1课3练数学八年级下BSD
∴地毯的长度为6.8 + 2.4 + 2.4 = 11.6(米).故地毯至少需要11.6米.
(2)地毯的面积为11.6×3 = 34.8(平方米),
∴34.8×30 = 1044(元).故买地毯至少需要1044元.
9.
(1)如图,利用平移线段,把楼梯的横竖向上、向左、向右平移,构成一个长方形,长、宽分别为6.8米、2.4米,
1课3练数学八年级下BSD
∴地毯的长度为6.8 + 2.4 + 2.4 = 11.6(米).故地毯至少需要11.6米.
(2)地毯的面积为11.6×3 = 34.8(平方米),
∴34.8×30 = 1044(元).故买地毯至少需要1044元.
10 中考新考法 方案设计 在综合实践课上,白老师带领同学们为某市劳动公园的三块空地提供铺草和设计小路的方案,三块长方形空地的长都为30米,宽都为20米。白老师的设计方案如图(1)所示,阴影部分为一条平行四边形小路,EF=1米,长方形除去阴影部分后剩余部分为草地。
数学思考:
(1)求图(1)中草地的面积。
深入探究:
(2)白老师让同学们开发想象并完成本组的设计,并让小组成员提出相关的问题。
①“善思小组”提出问题:设计方案如图(2)所示,有两条宽均为1米的小路(图中阴影部分),其余部分为草地,求草地的面积,请你解答此问题。
②“智慧小组”提出问题:设计方案如图(3)所示,阴影部分为草地,非阴影部分为1米宽的小路,沿着小路的中间从入口P处走到出口Q处,求所走的路线(图中虚线)长。请你思考此问题,并直接写出结果。


数学思考:
(1)求图(1)中草地的面积。
深入探究:
(2)白老师让同学们开发想象并完成本组的设计,并让小组成员提出相关的问题。
①“善思小组”提出问题:设计方案如图(2)所示,有两条宽均为1米的小路(图中阴影部分),其余部分为草地,求草地的面积,请你解答此问题。
②“智慧小组”提出问题:设计方案如图(3)所示,阴影部分为草地,非阴影部分为1米宽的小路,沿着小路的中间从入口P处走到出口Q处,求所走的路线(图中虚线)长。请你思考此问题,并直接写出结果。
答案:
10.
(1)草地的面积为20×30 - 1×20 = 580(平方米).
(2)①将小路往AB,AD边平移,直到小路与草地的边重合,则草地的面积为(30 - 1)×(20 - 1)=551(平方米).②将小路往AB,AD,DC边平移,直到小路与草地的边重合,则所走的路线(题图
(3)中虚线)长为30 + 20×2 - 2 = 68(米).
(1)草地的面积为20×30 - 1×20 = 580(平方米).
(2)①将小路往AB,AD边平移,直到小路与草地的边重合,则草地的面积为(30 - 1)×(20 - 1)=551(平方米).②将小路往AB,AD,DC边平移,直到小路与草地的边重合,则所走的路线(题图
(3)中虚线)长为30 + 20×2 - 2 = 68(米).
查看更多完整答案,请扫码查看