2025年1课3练江苏人民出版社八年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1课3练江苏人民出版社八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年1课3练江苏人民出版社八年级数学下册北师大版》

5 在△ABC中,∠ACB=2∠B,BC=2AC. 求证:∠A=90°.
答案:
如图,作$\angle ACB$的平分线$CD$交$AB$于点$D$,过点$D$作$DE\perp BC$于点$E$.
第5题
$\therefore \angle ACD = \angle ECD = \frac{1}{2}\angle ACB.$
$\because \angle ACB = 2\angle B,\therefore \angle B = \angle ECD,$
$\therefore BD = CD.\because DE\perp BC$于点$E,\therefore BE = CE = \frac{1}{2}BC.$
$\because BC = 2AC,\therefore AC = EC.$
在$\triangle ACD$和$\triangle ECD$中,$\begin{cases}AC = EC, \\\angle ACD = \angle ECD, \\CD = CD,\end{cases}$
$\therefore \triangle ACD\cong\triangle ECD(SAS),\therefore \angle A = \angle CED = 90^{\circ}.$
6 如图,在△ABC中,AD⊥BC于点D,∠B=2∠C. 求证:AB+BD=CD.
          第6题
答案:
如图,在$CD$上取一点$E$,使$ED = BD$,连接$AE$.
第6题
$\because AD\perp BC,\therefore \angle ADE = \angle ADB = 90^{\circ}.$
在$\triangle ADE$和$\triangle ADB$中,$\begin{cases}AD = AD, \\\angle ADE = \angle ADB, \\ED = BD,\end{cases}$
$\therefore \triangle ADE\cong\triangle ADB,$
$\therefore AE = AB,\angle AEB = \angle B = 2\angle C.$
又$\angle AEB = \angle C + \angle EAC,$
$\therefore \angle EAC = \angle C,\therefore AE = EC,\therefore AB = EC,$
$\therefore CD = EC + ED = AB + BD$,即$AB + BD = CD.$
7 如图,已知在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°. 求证:BD+DC=AB.

答案:
如图,延长$BD$到点$F$,使$BF = BA$,连接$AF$,$CF$.
$\because \angle ABD = 60^{\circ},BF = BA,$
$\therefore \triangle ABF$为等边三角形,
$\therefore AF = AB = AC = BF,\angle AFB = 60^{\circ},$
ANRF第7题
$\therefore \angle ACF = \angle AFC.$
又$\angle ACD = 60^{\circ},$
$\therefore \angle AFB = \angle ACD = 60^{\circ},$
$\therefore \angle DFC = \angle DCF,\therefore DC = DF,$
$\therefore BD + DC = BD + DF = BF = AB$,即$BD + DC = AB.$
8 如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°. 求CD的长.
           第8题
答案:
如图,延长$AD$,$BC$交于点$E$.
第8题
$\because \angle A = 30^{\circ},\angle B = 90^{\circ},\therefore BE = \frac{1}{2}AE,\angle E = 60^{\circ}.$
$\because \angle ADC = 120^{\circ},\therefore \angle EDC = 60^{\circ},\therefore \angle E = \angle EDC = \angle ECD = 60^{\circ},\therefore \triangle EDC$是等边三角形.
设$CD = CE = DE = x.\because AD = 4,BC = 1,$
$\therefore 1 + x = \frac{1}{2}(x + 4)$,解得$x = 2.\therefore CD = 2.$

查看更多完整答案,请扫码查看

关闭