2025年5年中考3年模拟八年级数学下册湘教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年中考3年模拟八年级数学下册湘教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年5年中考3年模拟八年级数学下册湘教版》

20.[答案含评分细则](2023湖南长沙岳麓长郡梅溪湖中学月考)(10分)如图,△ABC中,AB = AC,BC = 10,D是AC上一点,且CD = 6,BD = 8.
(1)求证:△BDC是直角三角形.
(2)求AB的长.
答案: 解析:\n(1)证明:$\because BC = 10$,$CD = 6$,$BD = 8$,$\therefore BC^{2}=CD^{2}+BD^{2}$,$\cdots\cdots3$分\n$\therefore\triangle BDC$是直角三角形,$\angle BDC = 90^{\circ}$。$\cdots\cdots5$分\n(2)设$AB = AC = x$,则$AD = x - 6$,$\cdots\cdots6$分\n$\because\angle ADB=\angle BDC = 90^{\circ}$,$\therefore AB^{2}=AD^{2}+BD^{2}$,$\therefore x^{2}=(x - 6)^{2}+8^{2}$,$\cdots\cdots8$分\n解得$x=\frac{25}{3}$,故$AB=\frac{25}{3}$。$\cdots\cdots10$分
21.[答案含评分细则](10分)如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解答下列问题:
(1)通过计算判断△ABC的形状.
(2)在该网格中确定一个格点D,连接AD,CD,使四边形ABCD为平行四边形,并求出□ABCD的面积.
答案:
解析:\n(1)由题意可得$AB=\sqrt{1^{2}+2^{2}}=\sqrt{5}$,$AC=\sqrt{2^{2}+4^{2}}=2\sqrt{5}$,$BC=\sqrt{3^{2}+4^{2}}=5$,$\cdots\cdots3$分\n$\because(\sqrt{5})^{2}+(2\sqrt{5})^{2}=25 = 5^{2}$,$\therefore AB^{2}+AC^{2}=BC^{2}$,$\therefore\triangle ABC$是直角三角形,$\angle BAC = 90^{\circ}$。$\cdots\cdots5$分\n(2)如图,过点$A$作$AD// BC$,过点$C$作$CD// AB$,直线$AD$和$CD$的交点就是格点$D$的位置。$\cdots\cdots8$分\n$\therefore S_{\square ABCD}=AB\cdot AC=\sqrt{5}\times2\sqrt{5}=10$。$\cdots\cdots10$分

22.[答案含评分细则](2023湖南衡阳咸水中学一模)(12分)如图,在△ABC中,AB = AC,AD是BC边上的高,AE//BC,BC = 2AE.
(1)求证:四边形ADCE是矩形.
(2)F是AB的中点,连接DF,EF,若∠DFE = 90°,AB = 4,求EF的长.
答案:
解析:\n(1)证明:$\because AB = AC$,$AD$是$BC$边上的高,$\therefore BC = 2BD = 2DC$,$\angle ADC = 90^{\circ}$,$\cdots\cdots2$分\n$\because BC = 2AE$,$\therefore AE = DC$,又$\because AE// BC$,$\therefore$四边形$AECD$为平行四边形,$\cdots\cdots4$分\n$\because\angle ADC = 90^{\circ}$,$\therefore$平行四边形$ADCE$是矩形。$\cdots\cdots6$分\n(2)如图,连接$DE$,$\cdots\cdots7$分\n$\because F$是$AB$的中点,$AD\perp BC$,$AB = 4$,$\therefore DF=\frac{1}{2}AB = 2$,$\cdots9$分\n$\because$四边形$ADCE$是矩形,$\therefore DE = AC = AB = 4$,$\because\angle DFE = 90^{\circ}$,$\therefore EF=\sqrt{DE^{2}-DF^{2}}=\sqrt{4^{2}-2^{2}}=2\sqrt{3}$。$\cdots\cdots12$分

23.[答案含评分细则](2024北京二中教育集团一模)(12分)如图,在等腰△ABC中,AB = BC,BO平分∠ABC,过点A作AD//BC交BO的延长线于点D,连接CD,过点D作DE⊥BD交BC的延长线于点E.
(1)判断四边形ABCD的形状,并说明理由.
(2)若AB = 4,∠ABE = 120°,求DE的长.
答案: 解析:\n(1)四边形$ABCD$是菱形,$\cdots\cdots1$分\n理由:$\because AB = BC$,$BO$平分$\angle ABC$,$\therefore AO = CO$,$\because AD// BE$,$\therefore\angle DAO=\angle ACB$,$\angle ADO=\angle CBO$,$\therefore\triangle ADO\cong\triangle CBO(AAS)$,$\therefore DO = BO$,$\cdots\cdots4$分\n$\therefore$四边形$ABCD$是平行四边形,$\because AB = BC$,$\therefore$四边形$ABCD$是菱形。$\cdots\cdots6$分\n(2)$\because$四边形$ABCD$是菱形,$\therefore BC = AB = 4$,$\because BO$平分$\angle ABC$,$\angle ABE = 120^{\circ}$,$\therefore\angle DBC=\frac{1}{2}\angle ABE = 60^{\circ}$,$\cdots\cdots7$分\n$\because BC = CD$,$\therefore\triangle BCD$是等边三角形,$\therefore BD = BC = 4$,$\cdots\cdots9$分\n$\because BD\perp DE$,$\therefore\angle BDE = 90^{\circ}$,$\therefore\angle E = 90^{\circ}-\angle DBC = 30^{\circ}$,$\therefore BE = 2BD = 8$,$\therefore DE=\sqrt{BE^{2}-BD^{2}}=\sqrt{8^{2}-4^{2}}=4\sqrt{3}$。$\cdots\cdots12$分
24.[答案含评分细则](14分)如图1,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE = BK = AG,连接DE、CK、DG.(M8202005)
(1)求证:①DE = DG;②DE⊥DG.
(2)以线段DE、DG为边作出正方形DEFG,连接KF,如图2,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.
答案:
解析:\n(1)①证明:$\because$四边形$ABCD$是正方形,$\therefore AD = DC$,$\angle GAD=\angle DCE = 90^{\circ}$,在$\triangle GAD$和$\triangle ECD$中,$\begin{cases}AG = CE\\\angle GAD=\angle ECD\\AD = CD\end{cases}$,$\therefore\triangle GAD\cong\triangle ECD(SAS)$,$\therefore DE = DG$。$\cdots\cdots4$分\n②证明:$\because$四边形$ABCD$是正方形,$\therefore\angle ADC = 90^{\circ}$,$\because\triangle GAD\cong\triangle ECD$,$\therefore\angle GDA=\angle CDE$,$\therefore\angle GDE=\angle GDA+\angle ADE=\angle CDE+\angle ADE=\angle ADC = 90^{\circ}$,$\therefore DE\perp DG$。$\cdots\cdots7$分\n(2)四边形$CEFK$是平行四边形。$\cdots\cdots8$分\n证明:设$CK$与$DE$交于点$O$,如图,$\because$四边形$ABCD$是正方形,$\therefore\angle B=\angle ECD = 90^{\circ}$,$BC = CD$,在$\triangle KBC$和$\triangle ECD$中,$\begin{cases}BC = CD\\\angle B=\angle ECD\\KB = EC\end{cases}$,$\therefore\triangle KBC\cong\triangle ECD(SAS)$,$\therefore DE = CK$,$\angle DEC=\angle BKC$,$\cdots\cdots10$分\n$\because\angle B = 90^{\circ}$,$\therefore\angle KCB+\angle BKC = 90^{\circ}$,$\therefore\angle KCB+\angle DEC = 90^{\circ}$,$\therefore\angle EOC = 180^{\circ}-90^{\circ}=90^{\circ}$,$\cdots\cdots12$分\n$\because$四边形$DEFG$是正方形,$\therefore DE = EF = CK$,$\angle FED = 90^{\circ}=\angle EOC$,$\therefore CK// EF$,$\therefore$四边形$CEFK$是平行四边形。$\cdots\cdots14$分

查看更多完整答案,请扫码查看

关闭