第40页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
10.(2024湖南永州东安期中,22,★★☆)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,求证:∠DHO = ∠DCO.

答案:
证明 $\because$ 四边形$ABCD$是菱形,
$\therefore OD = OB$,$\angle COD = 90^{\circ}$,
$\because DH\perp AB$,$\therefore OH=\frac{1}{2}BD = OB$,$\therefore \angle OHB=\angle OBH$,
又$\because AB// CD$,$\therefore \angle OBH=\angle ODC=\angle OHB$,
在$Rt\triangle COD$中,$\angle ODC+\angle DCO = 90^{\circ}$,
在$Rt\triangle DHB$中,$\angle OHB+\angle DHO = 90^{\circ}$,
$\therefore \angle DHO=\angle DCO$.
$\therefore OD = OB$,$\angle COD = 90^{\circ}$,
$\because DH\perp AB$,$\therefore OH=\frac{1}{2}BD = OB$,$\therefore \angle OHB=\angle OBH$,
又$\because AB// CD$,$\therefore \angle OBH=\angle ODC=\angle OHB$,
在$Rt\triangle COD$中,$\angle ODC+\angle DCO = 90^{\circ}$,
在$Rt\triangle DHB$中,$\angle OHB+\angle DHO = 90^{\circ}$,
$\therefore \angle DHO=\angle DCO$.
11.(2024贵州毕节一模,21,★★☆)如图,在菱形ABCD中,点E,F是对角线BD上的两点,DF = BE,连接AE,AF,CE.
(1)求证:△ADF≌△CBE.
(2)若BD = 6,∠BAD = 120°,且△AEF是等边三角形,求CE的长.

(1)求证:△ADF≌△CBE.
(2)若BD = 6,∠BAD = 120°,且△AEF是等边三角形,求CE的长.
答案:
解析
(1) 证明:$\because$ 四边形$ABCD$是菱形,
$\therefore AD = BC$,$AD// BC$,$\therefore \angle ADF=\angle CBE$,
在$\triangle ADF$和$\triangle CBE$中,
$\begin{cases}AD = BC,\\\angle ADF=\angle CBE,\\DF = BE,\end{cases}$ $\therefore \triangle ADF\cong\triangle CBE(SAS)$.
(2)$\because AD// BC$,$\angle BAD = 120^{\circ}$,$\therefore \angle ABC = 60^{\circ}$,
$\because$ 四边形$ABCD$是菱形,
$\therefore \angle ABE=\angle CBE = 30^{\circ}$,$AB = BC$,
又$\because BE = BE$,$\therefore \triangle ABE\cong\triangle CBE(SAS)$,$\therefore AE = CE$,
$\because \triangle AEF$为等边三角形,$\therefore \angle AEF = 60^{\circ}$,$AE = EF = AF$,$\therefore \angle BAE = 60^{\circ}-\angle ABE = 30^{\circ}$,
$\therefore \angle BAE=\angle ABE$,$\therefore BE = AE$,
同理$AF = DF$,$\therefore BE = EF = DF$,
$\because BD = 6$,$\therefore BE = AE = 2$,$\therefore CE = 2$.
(1) 证明:$\because$ 四边形$ABCD$是菱形,
$\therefore AD = BC$,$AD// BC$,$\therefore \angle ADF=\angle CBE$,
在$\triangle ADF$和$\triangle CBE$中,
$\begin{cases}AD = BC,\\\angle ADF=\angle CBE,\\DF = BE,\end{cases}$ $\therefore \triangle ADF\cong\triangle CBE(SAS)$.
(2)$\because AD// BC$,$\angle BAD = 120^{\circ}$,$\therefore \angle ABC = 60^{\circ}$,
$\because$ 四边形$ABCD$是菱形,
$\therefore \angle ABE=\angle CBE = 30^{\circ}$,$AB = BC$,
又$\because BE = BE$,$\therefore \triangle ABE\cong\triangle CBE(SAS)$,$\therefore AE = CE$,
$\because \triangle AEF$为等边三角形,$\therefore \angle AEF = 60^{\circ}$,$AE = EF = AF$,$\therefore \angle BAE = 60^{\circ}-\angle ABE = 30^{\circ}$,
$\therefore \angle BAE=\angle ABE$,$\therefore BE = AE$,
同理$AF = DF$,$\therefore BE = EF = DF$,
$\because BD = 6$,$\therefore BE = AE = 2$,$\therefore CE = 2$.
12.[推理能力]在菱形ABCD中,∠ABC = 60°,P是直线BD上一动点,以AP为边向右侧作等边△APE(A,P,E按逆时针排列),点E的位置随动点P的位置变化而变化.

(1)如图①,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是________,BC与CE的位置关系是________.
(2)如图②,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.
(1)如图①,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是________,BC与CE的位置关系是________.
(2)如图②,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.
答案:
解析
(1)如图1,连接$AC$,延长$CE$交$AD$于点$H$,
$\because$ 四边形$ABCD$是菱形,$\angle ABC = 60^{\circ}$,
$\therefore \triangle ABC$,$\triangle ACD$都是等边三角形,$\angle ABD=\angle CBD = 30^{\circ}$,
$\therefore AB = AC$,$\angle BAC=\angle ACB = 60^{\circ}$,$\angle CAH = 60^{\circ}$,
$\because \triangle APE$是等边三角形,$\therefore AP = AE$,$\angle PAE = 60^{\circ}$,
$\because \angle BAC=\angle PAE$,$\therefore \angle BAP+\angle PAC=\angle CAE+\angle PAC$,$\therefore \angle BAP=\angle CAE$,
$\therefore \triangle BAP\cong\triangle CAE(SAS)$,
$\therefore BP = CE$,$\angle ABP=\angle ACE = 30^{\circ}$,
$\therefore \angle BCE=\angle ACB+\angle ACE = 90^{\circ}$,$\therefore CE\perp BC$.
故答案为$BP = CE$;$CE\perp BC$.

(2)
(1)中结论仍然成立,理由如下:
如图2,连接$AC$,
由
(1)知$\triangle ABC$,$\triangle ACD$为等边三角形,
在$\triangle ABP$和$\triangle ACE$中,$AB = AC$,$AP = AE$,
又$\because \angle BAP=\angle BAC+\angle CAP = 60^{\circ}+\angle CAP$,$\angle CAE=\angle EAP+\angle CAP = 60^{\circ}+\angle CAP$,
$\therefore \angle BAP=\angle CAE$,$\therefore \triangle ABP\cong\triangle ACE(SAS)$,
$\therefore BP = CE$,$\angle ACE=\angle ABD = 30^{\circ}$,
$\therefore \angle BCE=\angle ACB+\angle ACE = 90^{\circ}$,$\therefore CE\perp BC$.
解析
(1)如图1,连接$AC$,延长$CE$交$AD$于点$H$,
$\because$ 四边形$ABCD$是菱形,$\angle ABC = 60^{\circ}$,
$\therefore \triangle ABC$,$\triangle ACD$都是等边三角形,$\angle ABD=\angle CBD = 30^{\circ}$,
$\therefore AB = AC$,$\angle BAC=\angle ACB = 60^{\circ}$,$\angle CAH = 60^{\circ}$,
$\because \triangle APE$是等边三角形,$\therefore AP = AE$,$\angle PAE = 60^{\circ}$,
$\because \angle BAC=\angle PAE$,$\therefore \angle BAP+\angle PAC=\angle CAE+\angle PAC$,$\therefore \angle BAP=\angle CAE$,
$\therefore \triangle BAP\cong\triangle CAE(SAS)$,
$\therefore BP = CE$,$\angle ABP=\angle ACE = 30^{\circ}$,
$\therefore \angle BCE=\angle ACB+\angle ACE = 90^{\circ}$,$\therefore CE\perp BC$.
故答案为$BP = CE$;$CE\perp BC$.
(2)
(1)中结论仍然成立,理由如下:
如图2,连接$AC$,
由
(1)知$\triangle ABC$,$\triangle ACD$为等边三角形,
在$\triangle ABP$和$\triangle ACE$中,$AB = AC$,$AP = AE$,
又$\because \angle BAP=\angle BAC+\angle CAP = 60^{\circ}+\angle CAP$,$\angle CAE=\angle EAP+\angle CAP = 60^{\circ}+\angle CAP$,
$\therefore \angle BAP=\angle CAE$,$\therefore \triangle ABP\cong\triangle ACE(SAS)$,
$\therefore BP = CE$,$\angle ACE=\angle ABD = 30^{\circ}$,
$\therefore \angle BCE=\angle ACB+\angle ACE = 90^{\circ}$,$\therefore CE\perp BC$.
1.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD = 4,CE = 6,那么△ABC的面积等于 ( )
A.12
B.14
C.16
D.18
A.12
B.14
C.16
D.18
答案:
C 如图,设$BD$与$CE$相交于点$H$,连接$ED$,
则$S_{四边形BCDE}=\frac{1}{2}BD\cdot EH+\frac{1}{2}BD\cdot CH=\frac{1}{2}BD\cdot (EH + CH)=\frac{1}{2}BD\cdot CE = 12$.$\because CE$是$\triangle ABC$的中线,
$\therefore S_{\triangle ACE}=S_{\triangle BCE}=\frac{1}{2}S_{\triangle ABC}$,$\because D$为$AC$的中点,$\therefore S_{\triangle ADE}=S_{\triangle EDC}=\frac{1}{2}S_{\triangle ACE}=\frac{1}{4}S_{\triangle ABC}$,
$\therefore S_{四边形BCDE}=\frac{1}{2}S_{\triangle ABC}+\frac{1}{4}S_{\triangle ABC}=\frac{3}{4}S_{\triangle ABC}$,$\therefore S_{\triangle ABC}=\frac{4}{3}\times12 = 16$. 故选C.

C 如图,设$BD$与$CE$相交于点$H$,连接$ED$,
则$S_{四边形BCDE}=\frac{1}{2}BD\cdot EH+\frac{1}{2}BD\cdot CH=\frac{1}{2}BD\cdot (EH + CH)=\frac{1}{2}BD\cdot CE = 12$.$\because CE$是$\triangle ABC$的中线,
$\therefore S_{\triangle ACE}=S_{\triangle BCE}=\frac{1}{2}S_{\triangle ABC}$,$\because D$为$AC$的中点,$\therefore S_{\triangle ADE}=S_{\triangle EDC}=\frac{1}{2}S_{\triangle ACE}=\frac{1}{4}S_{\triangle ABC}$,
$\therefore S_{四边形BCDE}=\frac{1}{2}S_{\triangle ABC}+\frac{1}{4}S_{\triangle ABC}=\frac{3}{4}S_{\triangle ABC}$,$\therefore S_{\triangle ABC}=\frac{4}{3}\times12 = 16$. 故选C.
2.(2024广西梧州一模)如图,菱形ABCD中,若AB = 5,BD = 6√2,则菱形ABCD的面积是________.

答案:
答案 $6\sqrt{14}$
解析 如图,连接$AC$交$BD$于点$O$,$\because$ 四边形$ABCD$是菱形,$\therefore OB = OD = 3\sqrt{2}$,$OA = OC$,$AC\perp BD$,在$Rt\triangle AOB$中,$\angle AOB = 90^{\circ}$,
根据勾股定理,得$OA=\sqrt{AB^{2}-OB^{2}}=\sqrt{7}$,$\therefore AC = 2OA = 2\sqrt{7}$,
$\therefore S_{菱形ABCD}=\frac{1}{2}AC\cdot BD=\frac{1}{2}\times2\sqrt{7}\times6\sqrt{2}=6\sqrt{14}$.

答案 $6\sqrt{14}$
解析 如图,连接$AC$交$BD$于点$O$,$\because$ 四边形$ABCD$是菱形,$\therefore OB = OD = 3\sqrt{2}$,$OA = OC$,$AC\perp BD$,在$Rt\triangle AOB$中,$\angle AOB = 90^{\circ}$,
根据勾股定理,得$OA=\sqrt{AB^{2}-OB^{2}}=\sqrt{7}$,$\therefore AC = 2OA = 2\sqrt{7}$,
$\therefore S_{菱形ABCD}=\frac{1}{2}AC\cdot BD=\frac{1}{2}\times2\sqrt{7}\times6\sqrt{2}=6\sqrt{14}$.
3.如图,在梯形ABCD中,AD//BC,AC⊥BD,AD = 1,AC = 3,BD = 4,则BC = ________,$S_{梯形ABCD}$=________.

答案:
答案 4;6
解析 如图,过点$D$作$DE// AC$交$BC$的延长线于点$E$,
$\because AD// BC$,$\therefore$ 四边形$ACED$是平行四边形,
$\therefore DE = AC = 3$,$CE = AD = 1$,
$\because AC\perp BD$,$\therefore DE\perp BD$,$\therefore \angle BDE = 90^{\circ}$,
$\therefore BE=\sqrt{BD^{2}+DE^{2}}=\sqrt{4^{2}+3^{2}} = 5$,$\therefore BC = BE - CE = 4$.
$\because AC\perp BD$,
$\therefore$ 梯形$ABCD$的面积$=\frac{1}{2}BD\cdot AC=\frac{1}{2}\times4\times3 = 6$.

答案 4;6
解析 如图,过点$D$作$DE// AC$交$BC$的延长线于点$E$,
$\because AD// BC$,$\therefore$ 四边形$ACED$是平行四边形,
$\therefore DE = AC = 3$,$CE = AD = 1$,
$\because AC\perp BD$,$\therefore DE\perp BD$,$\therefore \angle BDE = 90^{\circ}$,
$\therefore BE=\sqrt{BD^{2}+DE^{2}}=\sqrt{4^{2}+3^{2}} = 5$,$\therefore BC = BE - CE = 4$.
$\because AC\perp BD$,
$\therefore$ 梯形$ABCD$的面积$=\frac{1}{2}BD\cdot AC=\frac{1}{2}\times4\times3 = 6$.
查看更多完整答案,请扫码查看