2025年5年中考3年模拟八年级数学下册湘教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年中考3年模拟八年级数学下册湘教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年5年中考3年模拟八年级数学下册湘教版》

1.(2024 四川自贡中考)如图,在$\square ABCD$中,$\angle B = 60^{\circ},AB = 6\mathrm{cm},BC = 12\mathrm{cm}$. 点$P$从点$A$出发,以$1\mathrm{cm/s}$的速度沿$A\rightarrow D$运动,同时点$Q$从点$C$出发,以$3\mathrm{cm/s}$的速度沿$C\rightarrow B\rightarrow C\rightarrow\cdots$往复运动,当点$P$到达端点$D$时,点$Q$随之停止运动. 在此运动过程中,线段$PQ = CD$出现的次数是( )

A. 3
B. 4
C. 5
D. 6
答案:
B 在$\square ABCD$中,$AB = 6\ cm$,$BC = 12\ cm$,$\therefore CD = AB = 6\ cm$,$AD = BC = 12\ cm$,$AD// BC$,$\because$点$P$从点$A$出发,以$1\ cm/s$的速度沿$A\rightarrow D$运动,$\therefore$点$P$从点$A$出发,到达点$D$的时间为$12\div1 = 12(s)$,$\because$点$Q$从点$C$出发,以$3\ cm/s$的速度沿$C\rightarrow B\rightarrow C\rightarrow\cdots$往复运动,$\therefore$点$Q$从点$C$出发,第一次到$B$点的时间为$12\div3 = 4(s)$,$\because AD// BC$,$\therefore DP// CQ$,当$DP = CQ$时,四边形$CDPQ$为平行四边形,$\therefore PQ = CD$,当$PQ = AB$且$PQ$与$AB$不平行时,四边形$CDPQ$为等腰梯形,$\therefore PQ = AB = CD$,设$P$,$Q$同时运动的时间为$t(s)$,当$0 < t\leqslant4$时,$12 - t = 3t$,$\therefore t = 3$,此时$DP = CQ$,四边形$CDPQ$为平行四边形,$PQ = CD$,如图,过点$A$,$P$分别作$BC$的垂线,分别交$BC$于点$M$,$N$,$\therefore$四边形$AMNP$是矩形,$\therefore MN = AP = t$,$AM = PN$,$\because$四边形$ABQP$是等腰梯形,$\therefore PQ = AB$,$\angle PQN=\angle B$,$\because\angle BAM = 90^{\circ}-\angle B$,$\angle QPN = 90^{\circ}-\angle PQN$,$\therefore\angle BAM=\angle QPN$,在$\triangle ABM$和$\triangle PQN$中,$\begin{cases}AM = PN\\\angle BAM=\angle QPN\\AB = PQ\end{cases}$,$\therefore\triangle ABM\cong\triangle PQN(SAS)$,$\therefore BM = QN$,在$Rt\triangle ABM$中,$\angle B = 60^{\circ}$,$AB = 6\ cm$,$\therefore\angle BAM = 90^{\circ}-\angle B = 30^{\circ}$,$\therefore BM=\frac{1}{2}AB = 3\ cm$,$\therefore QN = BM = 3\ cm$,$\therefore t = 12 - 3t-3 - 3$,$\therefore t=\frac{3}{2}$,此时四边形$ABQP$是等腰梯形,$PQ = AB = CD$. 当$4 < t\leqslant8$时,$12 - t = 12 - 3(t - 4)$,$\therefore t = 6$,此时$DP = CQ$,四边形$CDPQ$为平行四边形,$PQ = CD$. 当$8 < t\leqslant12$时,$12 - t = 3(t - 8)$,$\therefore t = 9$,此时$DP = CQ$,四边形$CDPQ$为平行四边形,$PQ = CD$. 综上,当$t=\frac{3}{2}$或$t = 3$或$t = 6$或$t = 9$时,$PQ = CD$,共出现$4$次. 故选 B.

2. 如图,矩形$ABCD$中,点$P$是线段$AD$上一动点,$O$为$BD$的中点,连接$PO$并延长交$BC$于点$Q$,连接$BP,DQ$.
(1) 求证:$OP = OQ$.
(2) 若$AD = 8\mathrm{cm},AB = 6\mathrm{cm}$,点$P$从点$A$出发,以$1\mathrm{cm/s}$的速度向点$D$运动(不与点$D$重合). 设点$P$的运动时间为$t\mathrm{s}$,请用含$t$的式子表示$PD$的长;并求$t$为何值时,$BD\perp PQ$.
答案: 解析\n(1)证明:$\because$四边形$ABCD$是矩形,$\therefore AD// BC$,$\therefore\angle PDO=\angle QBO$,$\because O$为$BD$的中点,$\therefore OB = OD$,在$\triangle POD$与$\triangle QOB$中,$\begin{cases}\angle PDO=\angle QBO\\OD = OB\\\angle POD=\angle QOB\end{cases}$,$\therefore\triangle POD\cong\triangle QOB(ASA)$,$\therefore OP = OQ$.\n(2)依题意得$AP = t\ cm$,$\therefore PD=(8 - t)cm$. $\because OB = OD$,$OP = OQ$,$\therefore$四边形$PBQD$是平行四边形,当四边形$PBQD$是菱形时,$BD\perp PQ$,$\therefore PD = BP=(8 - t)cm$,$\because$四边形$ABCD$是矩形,$\therefore\angle A = 90^{\circ}$,在$Rt\triangle ABP$中,由勾股定理得$AB^{2}+AP^{2}=BP^{2}$,即$6^{2}+t^{2}=(8 - t)^{2}$,$\therefore t=\frac{7}{4}$,$\therefore$当$t=\frac{7}{4}$时,$BD\perp PQ$.
3. 如图,在菱形$ABCD$中,$AB = 5\mathrm{cm},\angle ADC = 120^{\circ}$,点$E、F$分别从点$A、C$同时出发,分别沿$AB、CB$方向向点$B$匀速移动(到达点$B$时停止),点$E$的速度为$1\mathrm{cm/s}$,点$F$的速度为$2\mathrm{cm/s}$,若经过$t\mathrm{s},\triangle DEF$为等边三角形,则$t$的值为( )

A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$
答案:
D 连接$DB$,如图所示,$\because$四边形$ABCD$为菱形,且$\angle ADC = 120^{\circ}$,$\therefore BC = CD$,$\angle CDB = 60^{\circ}$,$\therefore\triangle CDB$为等边三角形,$\therefore DB = DC$,$\because\triangle DEF$为等边三角形,$\therefore\angle EDF = 60^{\circ}$,$DE = DF$,$\therefore\angle CDB-\angle BDF=\angle EDF-\angle BDF$,$\therefore\angle CDF=\angle BDE$,在$\triangle EDB$和$\triangle FDC$中,$\begin{cases}DE = DF\\\angle EDB=\angle FDC\\DB = DC\end{cases}$,$\therefore\triangle EDB\cong\triangle FDC(SAS)$,$\therefore FC = BE$,由题意得$FC = 2t\ cm$,$AE = t\ cm$,$\therefore AB = AE + EB = AE + FC = t + 2t = 3t = 5\ cm$,$\therefore t=\frac{5}{3}$. 故选 D.

4. 如图,正方形$ABCD$中,点$O$是对角线$AC$的中点,点$P$是线段$AO$上(不与点$A、O$重合)的一个动点,过点$P$作$PE\perp PB$交边$CD$于点$E$.
(1) 求证:$PB = PE$.
(2) 过点$E$作$EF\perp AC$于点$F$,若正方形$ABCD$的边长为$2$,则在点$P$运动的过程中,$PF$的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.
答案:
解析\n(1)证明:如图 1,过点$P$作$MN// AD$,交$AB$于点$M$,交$CD$于点$N$,$\because PB\perp PE$,$\therefore\angle BPE = 90^{\circ}$,$\therefore\angle MPB+\angle EPN = 90^{\circ}$,$\because$四边形$ABCD$是正方形,$\therefore\angle BAD=\angle ABC=\angle D = 90^{\circ}$,$\because AD// MN$,$\therefore\angle BMP=\angle BAD=\angle PNE=\angle D = 90^{\circ}$,$\therefore\angle MPB+\angle MBP = 90^{\circ}$,$\because\angle MPB+\angle EPN = 90^{\circ}$,$\therefore\angle EPN=\angle MBP$,$\because\angle PCN = 45^{\circ}$,$\therefore\triangle PNC$是等腰直角三角形,$\therefore PN = CN$,$\because\angle BMP=\angle PNC=\angle ABC = 90^{\circ}$,$\therefore$四边形$MBCN$是矩形,$\therefore BM = CN$,$\therefore BM = PN$,$\therefore\triangle BMP\cong\triangle PNE(ASA)$,$\therefore PB = PE$.\n(2)在点$P$运动的过程中,$PF$的长度不发生变化. 理由:如图 2,连接$OB$,$\because$点$O$是正方形$ABCD$的对角线$AC$的中点,$\therefore OB = OA$,$OB\perp AC$,$\therefore\angle AOB = 90^{\circ}$,$\therefore\angle OBP+\angle BPO = 90^{\circ}$,$\because\angle BPE = 90^{\circ}$,$\therefore\angle BPO+\angle OPE = 90^{\circ}$,$\therefore\angle OBP=\angle OPE$,$\because EF\perp AC$,$\therefore\angle EFP = 90^{\circ}=\angle AOB$,由(1)得$PB = PE$,$\therefore\triangle OBP\cong\triangle FPE(AAS)$,$\therefore PF = OB$,在$Rt\triangle AOB$中,$OB = OA$,$AB = 2$,$\therefore 2OB^{2}=4$,$\therefore OB=\sqrt{2}$,$\therefore PF=\sqrt{2}$,$\therefore PF$为定值.

查看更多完整答案,请扫码查看

关闭