第43页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
7. (2024·陕西)如图,正方形CEFG的顶点G在正方形ABCD的边CD上,AF与DC交于点H. 若AB = 6,CE = 2,则DH的长为 ( )
A. 2 B. 3 C. $\frac{5}{2}$ D. $\frac{8}{3}$

A. 2 B. 3 C. $\frac{5}{2}$ D. $\frac{8}{3}$
答案:
B
8. 如图,AD是△ABC的中线,AE = EF = FC,BE交AD于点G,连接DF,则$\frac{GE}{DF}$的值为_______.

答案:
$\frac{1}{2}$
9. (2023·岳阳)如图,在⊙O中,AB为直径,BD为弦,C为$\overset{\frown}{BD}$的中点,连接AC,交BD于点F,以C为切点的切线与AB的延长线交于点E,连接CD. 若$\frac{CF}{AF}=\frac{1}{3}$,则$\frac{CE}{AE}$的值为_______.

答案:
$\frac{1}{2}$ 解析:连接$OC$. 根据垂径定理,易得$OC \perp BD$. 由切线的性质,得$OC \perp EC$. $\therefore EC // BD$. 利用平行线分线段成比例,得$\frac{EB}{AB} = \frac{CF}{AF} = \frac{1}{3}$. 设$EB = x$,则$AB = 3x$. $\therefore OB = OC = \frac{1}{2}AB = \frac{3}{2}x$. $\therefore EO = EB + OB = \frac{5}{2}x$. 在$Rt\triangle OCE$中,根据勾股定理,可得$EC = \sqrt{EO^{2} - OC^{2}} = 2x$. $\therefore \frac{CE}{AE} = \frac{2x}{x + 3x} = \frac{1}{2}$.
10. 如图,在△ABC中,DE//BC,∠ADE = ∠EFC,AD∶BD = 5∶3,CF = 6.
(1)直接指出图中所有的相似三角形;
(2)求DE的长.

(1)直接指出图中所有的相似三角形;
(2)求DE的长.
答案:
(1)$\triangle ADE \backsim \triangle ABC$;$\triangle EFC \backsim \triangle ABC$;$\triangle ADE \backsim \triangle EFC$ (2)$\because DE // BC$,$\therefore \angle ADE = \angle B$. $\because \angle ADE = \angle EFC$,$\therefore \angle B = \angle EFC$. $\therefore AB // EF$,即$BD // EF$. $\therefore$四边形$BDEF$为平行四边形. $\therefore DE = BF$. $\because DE // BC$,$AD:BD = 5:3$,$\therefore \frac{AD}{DB} = \frac{AE}{EC} = \frac{5}{3}$. $\because AB // EF$,$\therefore \frac{AE}{EC} = \frac{BF}{CF} = \frac{5}{3}$. $\because CF = 6$,$\therefore BF = 10$. $\therefore DE = 10$
11. 如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,交BC于点E. 若BF∶FD = 3∶1,AB + BE = 3$\sqrt{3}$,求△ABC的周长.

答案:
如图,过点$F$作$FM \perp AB$于点$M$,$FN \perp AC$于点$N$,过点$D$作$DT // AE$,交$BC$于点$T$. $\because AE$平分$\angle BAC$,$FM \perp AB$,$FN \perp AC$,$\therefore FM = FN$. $\because BF:FD = 3:1$,$\therefore S_{\triangle ABF}:S_{\triangle ADF} = 3:1$. $\therefore AB = 3AD$. $\because D$是$AC$的中点,$\therefore AD = CD$. $\therefore AB = \frac{3}{2}AC$. $\because DT // AE$,$\therefore \frac{AD}{CD} = \frac{ET}{CT}$. $\therefore ET = CT$. $\because DT // AE$,即$FE // DT$,$\therefore BF:FD = BE:ET = 3:1$. $\therefore BE = \frac{3}{2}CE$. $\therefore AB + BE = \frac{3}{2}(AC + CE)$. $\because AB + BE = 3\sqrt{3}$,$\therefore AC + CE = 2\sqrt{3}$. $\therefore \triangle ABC$的周长为$AB + AC + BC = (AB + BE) + (AC + CE) = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$
如图,过点$F$作$FM \perp AB$于点$M$,$FN \perp AC$于点$N$,过点$D$作$DT // AE$,交$BC$于点$T$. $\because AE$平分$\angle BAC$,$FM \perp AB$,$FN \perp AC$,$\therefore FM = FN$. $\because BF:FD = 3:1$,$\therefore S_{\triangle ABF}:S_{\triangle ADF} = 3:1$. $\therefore AB = 3AD$. $\because D$是$AC$的中点,$\therefore AD = CD$. $\therefore AB = \frac{3}{2}AC$. $\because DT // AE$,$\therefore \frac{AD}{CD} = \frac{ET}{CT}$. $\therefore ET = CT$. $\because DT // AE$,即$FE // DT$,$\therefore BF:FD = BE:ET = 3:1$. $\therefore BE = \frac{3}{2}CE$. $\therefore AB + BE = \frac{3}{2}(AC + CE)$. $\because AB + BE = 3\sqrt{3}$,$\therefore AC + CE = 2\sqrt{3}$. $\therefore \triangle ABC$的周长为$AB + AC + BC = (AB + BE) + (AC + CE) = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$
查看更多完整答案,请扫码查看