第103页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
21. (2024·苏州)如图,在△ABC中,AB = 4$\sqrt{2}$,D为AB的中点,∠BAC = ∠BCD,cos∠ADC = $\frac{\sqrt{2}}{4}$,⊙O是△ACD的外接圆. 求:
(1)BC的长;
(2)⊙O的半径.

(1)BC的长;
(2)⊙O的半径.
答案:
(1) $\because\angle BAC=\angle BCD$,$\angle B=\angle B$,$\therefore\triangle BAC\sim\triangle BCD$。$\therefore\frac{BC}{BD}=\frac{BA}{BC}$。$\because AB = 4\sqrt{2}$,$D$为$AB$的中点,$\therefore BD = AD = 2\sqrt{2}$。$\therefore\frac{BC}{2\sqrt{2}}=\frac{4\sqrt{2}}{BC}$。$\therefore BC = 4$(负值舍去)
(2) 如图,过点$A$作$AE\perp CD$,垂足为$E$,连接$CO$并延长,交$\odot O$于点$F$,连接$AF$。$\because$在$Rt\triangle AED$中,$\cos\angle ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4}$,$AD = 2\sqrt{2}$,$\therefore DE = 1$。$\therefore$由勾股定理,得$AE=\sqrt{AD^{2}-DE^{2}}=\sqrt{7}$。$\because\triangle BAC\sim\triangle BCD$,$\therefore\frac{AC}{CD}=\frac{AB}{CB}=\frac{4\sqrt{2}}{4}=\sqrt{2}$。设$CD = x$,则$AC=\sqrt{2}x$,$CE = x - 1$。$\because$在$Rt\triangle ACE$中,由勾股定理,得$AC^{2}=CE^{2}+AE^{2}$,$\therefore(\sqrt{2}x)^{2}=(x - 1)^{2}+(\sqrt{7})^{2}$,即$x^{2}+2x - 8 = 0$,解得$x_{1}=2$,$x_{2}=-4$(不合题意,舍去)。$\therefore CD = 2$,$AC = 2\sqrt{2}$。$\because\overset{\frown}{AC}=\overset{\frown}{AC}$,$\therefore\angle AFC=\angle ADC$。$\because CF$为$\odot O$的直径,$\therefore\angle CAF = 90^{\circ}$。$\therefore\sin\angle AFC=\frac{AC}{CF}=\sin\angle ADC=\frac{AE}{AD}$。$\therefore\frac{2\sqrt{2}}{CF}=\frac{\sqrt{7}}{2\sqrt{2}}$,解得$CF=\frac{8\sqrt{7}}{7}$。$\therefore\odot O$的半径为$\frac{4\sqrt{7}}{7}$
(1) $\because\angle BAC=\angle BCD$,$\angle B=\angle B$,$\therefore\triangle BAC\sim\triangle BCD$。$\therefore\frac{BC}{BD}=\frac{BA}{BC}$。$\because AB = 4\sqrt{2}$,$D$为$AB$的中点,$\therefore BD = AD = 2\sqrt{2}$。$\therefore\frac{BC}{2\sqrt{2}}=\frac{4\sqrt{2}}{BC}$。$\therefore BC = 4$(负值舍去)
(2) 如图,过点$A$作$AE\perp CD$,垂足为$E$,连接$CO$并延长,交$\odot O$于点$F$,连接$AF$。$\because$在$Rt\triangle AED$中,$\cos\angle ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4}$,$AD = 2\sqrt{2}$,$\therefore DE = 1$。$\therefore$由勾股定理,得$AE=\sqrt{AD^{2}-DE^{2}}=\sqrt{7}$。$\because\triangle BAC\sim\triangle BCD$,$\therefore\frac{AC}{CD}=\frac{AB}{CB}=\frac{4\sqrt{2}}{4}=\sqrt{2}$。设$CD = x$,则$AC=\sqrt{2}x$,$CE = x - 1$。$\because$在$Rt\triangle ACE$中,由勾股定理,得$AC^{2}=CE^{2}+AE^{2}$,$\therefore(\sqrt{2}x)^{2}=(x - 1)^{2}+(\sqrt{7})^{2}$,即$x^{2}+2x - 8 = 0$,解得$x_{1}=2$,$x_{2}=-4$(不合题意,舍去)。$\therefore CD = 2$,$AC = 2\sqrt{2}$。$\because\overset{\frown}{AC}=\overset{\frown}{AC}$,$\therefore\angle AFC=\angle ADC$。$\because CF$为$\odot O$的直径,$\therefore\angle CAF = 90^{\circ}$。$\therefore\sin\angle AFC=\frac{AC}{CF}=\sin\angle ADC=\frac{AE}{AD}$。$\therefore\frac{2\sqrt{2}}{CF}=\frac{\sqrt{7}}{2\sqrt{2}}$,解得$CF=\frac{8\sqrt{7}}{7}$。$\therefore\odot O$的半径为$\frac{4\sqrt{7}}{7}$
22. (2023·泸州)如图,某数学兴趣小组为了测量古树DE的高度,采用的方法如下:先从与古树底端D在同一水平线上的点A出发,沿坡度为i = 2∶$\sqrt{3}$的斜坡AB前进20$\sqrt{7}$ m到达点B,再沿水平方向继续前进一段距离后到达点C. 在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(结果保留根号,参考数据:sin37°≈$\frac{3}{5}$,cos37°≈$\frac{4}{5}$,tan37°≈$\frac{3}{4}$).

答案:
如图,过点$B$作$BF\perp AD$于点$F$。$\because i = 2:\sqrt{3}$,$\therefore$可设$BF = 2k$m,$AF=\sqrt{3}k$m。$\because$在$Rt\triangle ABF$中,$BF^{2}+AF^{2}=AB^{2}$,$AB = 20\sqrt{7}$m,$\therefore(2k)^{2}+(\sqrt{3}k)^{2}=(20\sqrt{7})^{2}$,解得$k = 20$(负值舍去)。$\therefore BF = 40$m。延长$BC$、$DE$交于点$H$。$\because BC$是水平线,$DE$是铅直线,$\therefore DH\perp CH$,四边形$BFDH$是矩形。$\therefore DH = BF = 40$m。$\because$在$Rt\triangle CDH$中,$\tan\angle DCH=\frac{DH}{CH}$,$\therefore CH=\frac{DH}{\tan\angle DCH}=\frac{40\sqrt{3}}{3}$m。$\because$在$Rt\triangle CEH$中,$\tan\angle ECH=\frac{EH}{CH}$,$\therefore EH = CH\cdot\tan\angle ECH=\frac{40\sqrt{3}}{3}\cdot\tan37^{\circ}\approx\frac{40\sqrt{3}}{3}\times\frac{3}{4}=10\sqrt{3}$(m)。$\therefore DE = DH - EH=(40 - 10\sqrt{3})$m。$\therefore$古树$DE$的高度为$(40 - 10\sqrt{3})$m
如图,过点$B$作$BF\perp AD$于点$F$。$\because i = 2:\sqrt{3}$,$\therefore$可设$BF = 2k$m,$AF=\sqrt{3}k$m。$\because$在$Rt\triangle ABF$中,$BF^{2}+AF^{2}=AB^{2}$,$AB = 20\sqrt{7}$m,$\therefore(2k)^{2}+(\sqrt{3}k)^{2}=(20\sqrt{7})^{2}$,解得$k = 20$(负值舍去)。$\therefore BF = 40$m。延长$BC$、$DE$交于点$H$。$\because BC$是水平线,$DE$是铅直线,$\therefore DH\perp CH$,四边形$BFDH$是矩形。$\therefore DH = BF = 40$m。$\because$在$Rt\triangle CDH$中,$\tan\angle DCH=\frac{DH}{CH}$,$\therefore CH=\frac{DH}{\tan\angle DCH}=\frac{40\sqrt{3}}{3}$m。$\because$在$Rt\triangle CEH$中,$\tan\angle ECH=\frac{EH}{CH}$,$\therefore EH = CH\cdot\tan\angle ECH=\frac{40\sqrt{3}}{3}\cdot\tan37^{\circ}\approx\frac{40\sqrt{3}}{3}\times\frac{3}{4}=10\sqrt{3}$(m)。$\therefore DE = DH - EH=(40 - 10\sqrt{3})$m。$\therefore$古树$DE$的高度为$(40 - 10\sqrt{3})$m
查看更多完整答案,请扫码查看