第57页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
9. (2024·上海改编)如图,在矩形ABCD中,E为边CD上一点,且AE⊥BD. 求证:AD² = DE·DC.

答案:
$\because$ 四边形$ABCD$是矩形,$\therefore \angle ADE = \angle BAD = 90^{\circ}$,$BA = DC$.$\therefore$ 在$Rt\triangle DAB$中,$\angle ABD + \angle ADB = 90^{\circ}$. 设$AE$、$BD$交于点$H$.$\because AE \perp BD$,$\therefore$ 在$Rt\triangle DHA$中,$\angle DAE + \angle ADB = 90^{\circ}$.$\therefore \angle DAE = \angle ABD$.$\therefore \triangle ADE \backsim \triangle BAD$.$\therefore \frac{AD}{BA} = \frac{DE}{AD}$.$\therefore AD^{2} = DE \cdot BA$.$\therefore AD^{2} = DE \cdot DC$
10. 如图,O为线段PB上一点,以点O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC² = PA·PB,连接AC、BC.
(1)求证:PC是⊙O的切线;
(2)若AB = 3PA,求$\frac{AC}{CB}$的值.

(1)求证:PC是⊙O的切线;
(2)若AB = 3PA,求$\frac{AC}{CB}$的值.
答案:
(1) 连接$OC$.$\because PC^{2} = PA \cdot PB$,$\therefore \frac{PA}{PC} = \frac{PC}{PB}$.$\because \angle P = \angle P$,$\therefore \triangle PAC \backsim \triangle PCB$.$\therefore \angle PCA = \angle B$.$\because AB$是$\odot O$的直径,$\therefore \angle ACB = 90^{\circ}$.$\therefore \angle CAB + \angle B = 90^{\circ}$.$\because OA = OC$,$\therefore \angle CAB = \angle OCA$.$\therefore \angle PCA + \angle OCA = 90^{\circ}$,即$\angle PCO = 90^{\circ}$.$\therefore OC \perp PC$.$\because OC$为$\odot O$的半径,$\therefore PC$是$\odot O$的切线
(2) 设$PA = x$,则$AB = 3PA = 3x$.$\therefore PB = PA + AB = 4x$,$OA = OC = \frac{3}{2}x$.$\therefore PO = PA + OA = \frac{5}{2}x$.$\because \angle PCO = 90^{\circ}$,$\therefore$ 由勾股定理,得$PC = \sqrt{PO^{2} - OC^{2}} = 2x$.$\because \triangle PAC \backsim \triangle PCB$,$\therefore \frac{AC}{CB} = \frac{PC}{PB} = \frac{2x}{4x} = \frac{1}{2}$
(1) 连接$OC$.$\because PC^{2} = PA \cdot PB$,$\therefore \frac{PA}{PC} = \frac{PC}{PB}$.$\because \angle P = \angle P$,$\therefore \triangle PAC \backsim \triangle PCB$.$\therefore \angle PCA = \angle B$.$\because AB$是$\odot O$的直径,$\therefore \angle ACB = 90^{\circ}$.$\therefore \angle CAB + \angle B = 90^{\circ}$.$\because OA = OC$,$\therefore \angle CAB = \angle OCA$.$\therefore \angle PCA + \angle OCA = 90^{\circ}$,即$\angle PCO = 90^{\circ}$.$\therefore OC \perp PC$.$\because OC$为$\odot O$的半径,$\therefore PC$是$\odot O$的切线
(2) 设$PA = x$,则$AB = 3PA = 3x$.$\therefore PB = PA + AB = 4x$,$OA = OC = \frac{3}{2}x$.$\therefore PO = PA + OA = \frac{5}{2}x$.$\because \angle PCO = 90^{\circ}$,$\therefore$ 由勾股定理,得$PC = \sqrt{PO^{2} - OC^{2}} = 2x$.$\because \triangle PAC \backsim \triangle PCB$,$\therefore \frac{AC}{CB} = \frac{PC}{PB} = \frac{2x}{4x} = \frac{1}{2}$
11. 如图,在Rt△ABC中,∠C = 90°,AC = 3,BC = 4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着DE折叠. 当折叠后点B落在边AC上的点P处,且四边形PEBD是菱形时,求折痕DE的长.

答案:
在$Rt\triangle ABC$中,$\because \angle C = 90^{\circ}$,$AC = 3$,$BC = 4$,$\therefore$ 由勾股定理,得$AB = \sqrt{AC^{2} + BC^{2}} = 5$. 连接$BP$.$\because$ 四边形$PEBD$是菱形,$\therefore PE = BE$,$PE // AB$. 设$CE = x$,则$BE = PE = 4 - x$.$\because PE // AB$,$\therefore \triangle PEC \backsim \triangle ABC$.$\therefore \frac{CE}{CB} = \frac{PE}{AB}$,即$\frac{x}{4} = \frac{4 - x}{5}$,解得$x = \frac{16}{9}$.$\therefore CE = \frac{16}{9}$,$BE = PE = 4 - \frac{16}{9} = \frac{20}{9}$.$\because$ 在$Rt\triangle PCE$中,$PE = \frac{20}{9}$,$CE = \frac{16}{9}$,$\therefore$ 由勾股定理,得$PC = \sqrt{PE^{2} - CE^{2}} = \frac{4}{3}$.$\therefore$ 在$Rt\triangle PCB$中,由勾股定理,得$BP = \sqrt{PC^{2} + BC^{2}} = \frac{4\sqrt{10}}{3}$. 又$\because$ 易得$S_{菱形PEBD} = BE \cdot PC = \frac{1}{2}DE \cdot BP$,$\therefore DE = \frac{2BE \cdot PC}{BP} = \frac{4\sqrt{10}}{9}$
查看更多完整答案,请扫码查看