第97页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
7. 如图,在四边形ABCD中,对角线AC、BD交于点O,∠BCD是钝角,AB = AD,BD平分∠ABC. 若CD = 3,BD = 2√6,sin∠DBC = √3/3,求AC的长.

答案:
过点 $D$ 作 $DE \perp BC$,交 $BC$ 的延长线于点 $E$,则 $\angle E = 90^{\circ}$。$\because$ 在 $Rt\triangle BED$ 中,$\sin \angle DBC = \frac{DE}{BD} = \frac{\sqrt{3}}{3}, BD = 2\sqrt{6}$,$\therefore DE = 2\sqrt{2}$。$\therefore BE = \sqrt{BD^{2} - DE^{2}} = 4$。在 $Rt\triangle DCE$ 中,$\because CD = 3$,$\therefore CE = \sqrt{CD^{2} - DE^{2}} = 1$。$\therefore BC = BE - CE = 3$。$\therefore BC = CD$。$\therefore \angle CBD = \angle CDB$。$\because BD$ 平分 $\angle ABC$,$\therefore \angle ABD = \angle CBD$。$\therefore \angle ABD = \angle CDB$。$\therefore AB // CD$。$\because AB = AD$,$\therefore \angle ABD = \angle ADB$。$\therefore \angle ADB = \angle DBC$。$\therefore AD // BC$。$\therefore$ 四边形 $ABCD$ 是平行四边形。又 $\because AB = AD$,$\therefore$ 四边形 $ABCD$ 是菱形。$\therefore AC \perp BD, AO = CO, BO = DO = \frac{1}{2}BD = \sqrt{6}$。$\therefore$ 在 $Rt\triangle BOC$ 中,$OC = \sqrt{BC^{2} - BO^{2}} = \sqrt{3}$。$\therefore AC = 2OC = 2\sqrt{3}$
8. 如图,C是以点O为圆心,AB为直径的半圆上一点,连接AC、BC、OC. 若AC = 4,BC = 3,则sin∠BOC的值为 ( )
A. 1 B. 24/25 C. 16/25 D. 9/25

A. 1 B. 24/25 C. 16/25 D. 9/25
答案:
B
9. 如图,在△ABC中,AB = AC = 5,BC = 8. 若∠BPC = 1/2∠BAC,则tan∠BPC的值为_______.

答案:
$\frac{4}{3}$
10. 如图所示为由10个完全相同的正三角形构成的网格图,则cos(α + β)的值为_______.

答案:
$\frac{\sqrt{21}}{7}$
11. 如图①,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA = ∠CBD.
(1) 判断直线CD与⊙O的位置关系,并说明理由;
(2) 若tan∠CDA = 1/2,AC = 2,求⊙O的半径;
(3) 如图②,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连接BE,则sin∠DBE的值为_______.

(1) 判断直线CD与⊙O的位置关系,并说明理由;
(2) 若tan∠CDA = 1/2,AC = 2,求⊙O的半径;
(3) 如图②,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连接BE,则sin∠DBE的值为_______.
答案:
(1) $CD$ 与 $\odot O$ 相切 理由:连接 $OD$。$\because OD = OB$,$\therefore \angle ODB = \angle CBD$。$\because \angle CDA = \angle CBD$,$\therefore \angle CDA = \angle ODB$。$\because AB$ 为 $\odot O$ 的直径,$\therefore \angle ADB = \angle ADO + \angle ODB = 90^{\circ}$。$\therefore \angle ADO + \angle CDA = 90^{\circ}$。$\therefore \angle CDO = 90^{\circ}$,即 $OD \perp CD$。$\because OD$ 是 $\odot O$ 的半径,$\therefore CD$ 与 $\odot O$ 相切。
(2) $\because \angle CDA = \angle CBD, \tan \angle CDA = \frac{1}{2}$,$\therefore \tan \angle CBD = \frac{1}{2}$。$\therefore$ 在 $Rt\triangle ADB$ 中,$\tan \angle CBD = \frac{AD}{DB} = \frac{1}{2}$。$\because \angle C = \angle C, \angle CDA = \angle CBD$,$\therefore \triangle CAD \sim \triangle CDB$。$\therefore \frac{CA}{CD} = \frac{CD}{CB} = \frac{AD}{DB} = \frac{1}{2}$。$\therefore CD = 2CA = 4$。$\therefore CB = 2CD = 8$。$\therefore AB = CB - CA = 8 - 2 = 6$。$\therefore OA = OB = \frac{1}{2}AB = 3$,即 $\odot O$ 的半径为 3
(3) $\frac{3\sqrt{10}}{10}$ 解析:连接 $OE$,过点 $E$ 作 $EG \perp BD$ 于点 $G$。$\because DE$ 平分 $\angle ADB$,$\therefore \angle ADE = \angle BDE = 45^{\circ}$。$\because \overset{\frown}{BE} = \overset{\frown}{BE}$,$\therefore \angle BOE = 2\angle BDE = 90^{\circ}$。$\therefore$ 在 $Rt\triangle BOE$ 中,由勾股定理,得 $BE = \sqrt{OB^{2} + OE^{2}} = 3\sqrt{2}$。$\because$ 在 $Rt\triangle ABD$ 中,由勾股定理,得 $AD^{2} + BD^{2} = AB^{2} = 6^{2}, \frac{AD}{BD} = \frac{1}{2}$,$\therefore AD = \frac{6\sqrt{5}}{5}, BD = \frac{12\sqrt{5}}{5}$。$\because EG \perp BD, \angle BDE = 45^{\circ}$,$\therefore \angle DEG = 45^{\circ} = \angle BDE$。$\therefore DG = EG$。设 $DG = x$,则 $EG = x, BG = BD - DG = \frac{12\sqrt{5}}{5} - x$。在 $Rt\triangle BEG$ 中,由勾股定理,得 $EG^{2} + BG^{2} = BE^{2}$,$\therefore x^{2} + (\frac{12\sqrt{5}}{5} - x)^{2} = (3\sqrt{2})^{2}$,即 $5x^{2} - 12\sqrt{5}x + 27 = 0$,解得 $x_{1} = \frac{9\sqrt{5}}{5}, x_{2} = \frac{3\sqrt{5}}{5}$(不合题意,舍去)。$\therefore EG = \frac{9\sqrt{5}}{5}$。$\therefore$ 在 $Rt\triangle BGE$ 中,$\sin \angle DBE = \frac{EG}{BE} = \frac{3\sqrt{10}}{10}$。
(1) $CD$ 与 $\odot O$ 相切 理由:连接 $OD$。$\because OD = OB$,$\therefore \angle ODB = \angle CBD$。$\because \angle CDA = \angle CBD$,$\therefore \angle CDA = \angle ODB$。$\because AB$ 为 $\odot O$ 的直径,$\therefore \angle ADB = \angle ADO + \angle ODB = 90^{\circ}$。$\therefore \angle ADO + \angle CDA = 90^{\circ}$。$\therefore \angle CDO = 90^{\circ}$,即 $OD \perp CD$。$\because OD$ 是 $\odot O$ 的半径,$\therefore CD$ 与 $\odot O$ 相切。
(2) $\because \angle CDA = \angle CBD, \tan \angle CDA = \frac{1}{2}$,$\therefore \tan \angle CBD = \frac{1}{2}$。$\therefore$ 在 $Rt\triangle ADB$ 中,$\tan \angle CBD = \frac{AD}{DB} = \frac{1}{2}$。$\because \angle C = \angle C, \angle CDA = \angle CBD$,$\therefore \triangle CAD \sim \triangle CDB$。$\therefore \frac{CA}{CD} = \frac{CD}{CB} = \frac{AD}{DB} = \frac{1}{2}$。$\therefore CD = 2CA = 4$。$\therefore CB = 2CD = 8$。$\therefore AB = CB - CA = 8 - 2 = 6$。$\therefore OA = OB = \frac{1}{2}AB = 3$,即 $\odot O$ 的半径为 3
(3) $\frac{3\sqrt{10}}{10}$ 解析:连接 $OE$,过点 $E$ 作 $EG \perp BD$ 于点 $G$。$\because DE$ 平分 $\angle ADB$,$\therefore \angle ADE = \angle BDE = 45^{\circ}$。$\because \overset{\frown}{BE} = \overset{\frown}{BE}$,$\therefore \angle BOE = 2\angle BDE = 90^{\circ}$。$\therefore$ 在 $Rt\triangle BOE$ 中,由勾股定理,得 $BE = \sqrt{OB^{2} + OE^{2}} = 3\sqrt{2}$。$\because$ 在 $Rt\triangle ABD$ 中,由勾股定理,得 $AD^{2} + BD^{2} = AB^{2} = 6^{2}, \frac{AD}{BD} = \frac{1}{2}$,$\therefore AD = \frac{6\sqrt{5}}{5}, BD = \frac{12\sqrt{5}}{5}$。$\because EG \perp BD, \angle BDE = 45^{\circ}$,$\therefore \angle DEG = 45^{\circ} = \angle BDE$。$\therefore DG = EG$。设 $DG = x$,则 $EG = x, BG = BD - DG = \frac{12\sqrt{5}}{5} - x$。在 $Rt\triangle BEG$ 中,由勾股定理,得 $EG^{2} + BG^{2} = BE^{2}$,$\therefore x^{2} + (\frac{12\sqrt{5}}{5} - x)^{2} = (3\sqrt{2})^{2}$,即 $5x^{2} - 12\sqrt{5}x + 27 = 0$,解得 $x_{1} = \frac{9\sqrt{5}}{5}, x_{2} = \frac{3\sqrt{5}}{5}$(不合题意,舍去)。$\therefore EG = \frac{9\sqrt{5}}{5}$。$\therefore$ 在 $Rt\triangle BGE$ 中,$\sin \angle DBE = \frac{EG}{BE} = \frac{3\sqrt{10}}{10}$。
查看更多完整答案,请扫码查看