第99页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
6. 如图,在△ABC中,AB = AC,以AB为直径的⊙O交AC于点D,交BC于点E,直线EF⊥AC于点F,交AB的延长线于点H.
(1) 求证:HF是⊙O的切线;
(2) 当EB = 6,cos∠ABE = $\frac{1}{3}$时,求tan H的值.

(1) 求证:HF是⊙O的切线;
(2) 当EB = 6,cos∠ABE = $\frac{1}{3}$时,求tan H的值.
答案:
(1) 连接$OE$、$AE$.$\because AB$为$\odot O$的直径,$\therefore \angle AEB = 90^{\circ}$,即$AE \perp BC$.$\because AB = AC$,$\therefore$易得$BE = CE$.$\because OB = OA$,$\therefore OE // AC$.又$\because HF \perp AC$,$\therefore OE \perp HF$.$\because OE$是$\odot O$的半径,$\therefore HF$是$\odot O$的切线。
(2) 过点$E$作$EG \perp AH$于点$G$.$\because$在$Rt\triangle BGE$中,$\cos \angle ABE = \frac{1}{3}$,$EB = 6$,$\therefore BG = EB \cdot \cos \angle ABE = 2$.$\therefore EG = \sqrt{EB^{2} - BG^{2}} = 4\sqrt{2}$.$\because$在$Rt\triangle BEA$中,$\cos \angle ABE = \frac{1}{3}$,$EB = 6$,$\therefore AB = \frac{EB}{\cos \angle ABE} = 18$.$\therefore OB = OE = \frac{1}{2}AB = 9$.$\therefore GO = OB - BG = 7$.$\because EG \perp AH$,$OE \perp HF$,$\therefore \angle H + \angle HEG = 90^{\circ}$,$\angle GEO + \angle HEG = 90^{\circ}$.$\therefore \angle H = \angle GEO$.$\therefore$在$Rt\triangle EGO$中,$\tan H = \tan \angle GEO = \frac{GO}{EG} = \frac{7}{4\sqrt{2}} = \frac{7\sqrt{2}}{8}$
(1) 连接$OE$、$AE$.$\because AB$为$\odot O$的直径,$\therefore \angle AEB = 90^{\circ}$,即$AE \perp BC$.$\because AB = AC$,$\therefore$易得$BE = CE$.$\because OB = OA$,$\therefore OE // AC$.又$\because HF \perp AC$,$\therefore OE \perp HF$.$\because OE$是$\odot O$的半径,$\therefore HF$是$\odot O$的切线。
(2) 过点$E$作$EG \perp AH$于点$G$.$\because$在$Rt\triangle BGE$中,$\cos \angle ABE = \frac{1}{3}$,$EB = 6$,$\therefore BG = EB \cdot \cos \angle ABE = 2$.$\therefore EG = \sqrt{EB^{2} - BG^{2}} = 4\sqrt{2}$.$\because$在$Rt\triangle BEA$中,$\cos \angle ABE = \frac{1}{3}$,$EB = 6$,$\therefore AB = \frac{EB}{\cos \angle ABE} = 18$.$\therefore OB = OE = \frac{1}{2}AB = 9$.$\therefore GO = OB - BG = 7$.$\because EG \perp AH$,$OE \perp HF$,$\therefore \angle H + \angle HEG = 90^{\circ}$,$\angle GEO + \angle HEG = 90^{\circ}$.$\therefore \angle H = \angle GEO$.$\therefore$在$Rt\triangle EGO$中,$\tan H = \tan \angle GEO = \frac{GO}{EG} = \frac{7}{4\sqrt{2}} = \frac{7\sqrt{2}}{8}$
7. 如图,AD是⊙O的直径,BD、BC都是弦,且BD = BC,经过点B作⊙O的切线,交AD的延长线于点E.
(1) 求证:∠EBD = ∠CAB;
(2) 若BC = $\sqrt{3}$,AC = 5,求sin∠CBA的值.

(1) 求证:∠EBD = ∠CAB;
(2) 若BC = $\sqrt{3}$,AC = 5,求sin∠CBA的值.
答案:
(1) 连接$OB$.$\because BE$是$\odot O$的切线,$\therefore OB \perp BE$.$\therefore \angle OBD + \angle EBD = 90^{\circ}$.$\because AD$是$\odot O$的直径,$\therefore \angle ABD = 90^{\circ}$.$\therefore \angle ABO + \angle OBD = 90^{\circ}$.$\therefore \angle EBD = \angle ABO$.$\because OA = OB$,$\therefore \angle OAB = \angle ABO$.$\therefore \angle OAB = \angle EBD$.$\because BD = BC$,$\therefore \overset{\frown}{BD} = \overset{\frown}{BC}$.$\therefore \angle BAD = \angle CAB$.$\therefore \angle EBD = \angle CAB$。
(2) 连接$CD$,交$OB$于点$M$.$\because \overset{\frown}{BD} = \overset{\frown}{BC}$,$\therefore CM = MD$,$OB \perp CD$.又$\because OA = OD$,$\therefore OM$为$\triangle ACD$的中位线.$\therefore OM = \frac{1}{2}AC = \frac{5}{2}$.设$\odot O$的半径为$r$,则$BM = r - \frac{5}{2}$.$\therefore$在$Rt\triangle OMD$和$Rt\triangle BMD$中,由勾股定理,得$DM^{2} = OD^{2} - OM^{2} = BD^{2} - BM^{2}$.$\because BD = BC = \sqrt{3}$,$\therefore r^{2} - (\frac{5}{2})^{2} = (\sqrt{3})^{2} - (r - \frac{5}{2})^{2}$,解得$r = 3$(负值舍去).$\therefore AD = 2r = 6$.$\because AD$是$\odot O$的直径,$\therefore \angle ACD = 90^{\circ}$.$\therefore$在$Rt\triangle ACD$中,$\sin \angle ADC = \frac{AC}{AD} = \frac{5}{6}$.$\because \overset{\frown}{AC} = \overset{\frown}{AC}$,$\therefore \angle CBA = \angle ADC$.$\therefore \sin \angle CBA = \frac{5}{6}$
(1) 连接$OB$.$\because BE$是$\odot O$的切线,$\therefore OB \perp BE$.$\therefore \angle OBD + \angle EBD = 90^{\circ}$.$\because AD$是$\odot O$的直径,$\therefore \angle ABD = 90^{\circ}$.$\therefore \angle ABO + \angle OBD = 90^{\circ}$.$\therefore \angle EBD = \angle ABO$.$\because OA = OB$,$\therefore \angle OAB = \angle ABO$.$\therefore \angle OAB = \angle EBD$.$\because BD = BC$,$\therefore \overset{\frown}{BD} = \overset{\frown}{BC}$.$\therefore \angle BAD = \angle CAB$.$\therefore \angle EBD = \angle CAB$。
(2) 连接$CD$,交$OB$于点$M$.$\because \overset{\frown}{BD} = \overset{\frown}{BC}$,$\therefore CM = MD$,$OB \perp CD$.又$\because OA = OD$,$\therefore OM$为$\triangle ACD$的中位线.$\therefore OM = \frac{1}{2}AC = \frac{5}{2}$.设$\odot O$的半径为$r$,则$BM = r - \frac{5}{2}$.$\therefore$在$Rt\triangle OMD$和$Rt\triangle BMD$中,由勾股定理,得$DM^{2} = OD^{2} - OM^{2} = BD^{2} - BM^{2}$.$\because BD = BC = \sqrt{3}$,$\therefore r^{2} - (\frac{5}{2})^{2} = (\sqrt{3})^{2} - (r - \frac{5}{2})^{2}$,解得$r = 3$(负值舍去).$\therefore AD = 2r = 6$.$\because AD$是$\odot O$的直径,$\therefore \angle ACD = 90^{\circ}$.$\therefore$在$Rt\triangle ACD$中,$\sin \angle ADC = \frac{AC}{AD} = \frac{5}{6}$.$\because \overset{\frown}{AC} = \overset{\frown}{AC}$,$\therefore \angle CBA = \angle ADC$.$\therefore \sin \angle CBA = \frac{5}{6}$
8. (2023·武汉)如图,在四边形ABCD中,AB//CD,AD⊥AB,以点D为圆心、AD长为半径的弧恰好与BC相切,切点为E. 若$\frac{AB}{CD}$ = $\frac{1}{3}$,则sin C的值为_______.

答案:
$\frac{\sqrt{5}}{3}$
9. 如图,半径为$\sqrt{3}$的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB的值为_______.

答案:
$\frac{\sqrt{3}}{5}$ 解析:设$\odot O$与边$BC$相切于点$D$,连接$OB$、$OD$.$\because \odot O$与等边三角形$ABC$的两边$AB$、$BC$都相切,$\therefore$易得$\angle OBC = \angle OBA = \frac{1}{2} \angle ABC = 30^{\circ}$,$\angle ODB = 90^{\circ}$.$\because$在$Rt\triangle OBD$中,$\tan \angle OBD = \frac{OD}{BD}$,$\therefore BD = \frac{OD}{\tan \angle OBD} = \frac{\sqrt{3}}{\frac{\sqrt{3}}{3}} = 3$.$\therefore CD = BC - BD = 8 - 3 = 5$.$\therefore$在$Rt\triangle OCD$中,$\tan \angle OCB = \frac{OD}{CD} = \frac{\sqrt{3}}{5}$
查看更多完整答案,请扫码查看