2025年基础训练大象出版社八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年基础训练大象出版社八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年基础训练大象出版社八年级数学上册人教版》

19. ($★★$)如图,在$\triangle ABC$中,$AB= AC= 4$,$\angle A= 30^{\circ}$,$P是BC$上任意一点,$PM\perp AB于点M$,$PN\perp AC于点N$,则$PM + PN$的值为
2
.
答案: 2
20. ($★★$)如图,在$\triangle ABC$中,$AB= AC$,点$D在BC$边上,$\angle DAB= 90^{\circ}$.
(1)当$\angle C= 30^{\circ}$时,求证:$BD= 2CD$.
(2)当$BD= 2CD$时,$\angle C是否一定为30^{\circ}$?如果一定,给出证明;如果不一定,请说明理由.
答案:
(1)当∠C=30°时,
∵AB=AC,
∴∠B=∠C=30°.又
∵∠DAB=90°,
∴BD=2AD且∠ADB=60°.
∴∠DAC=∠ADB-∠C=30°.
∴∠C=∠DAC=30°.
∴AD=CD.
∴BD=2CD.
(2)当BD=2CD时,∠C=30°.证明如下:如图,在 BD 上取点 M,使MA=MD,连接 AM,则∠MAD=∠MDA.
∵∠DAB=90°,
∴∠MAD+∠BAM=∠MDA+∠B=90°.
∴∠BAM=∠B.
∴AM=BM=DM=1/2BD.
∵BD=2CD,
∴AM=CD.
∴BM=CD.
∵AB=AC,
∴∠B=∠C.在△ABM与△ACD中,{AB=AC,∠B=∠C,BM=CD,}
∴△ABM≌△ACD(SAS).
∴AM=AD.
∴AD=AM=MD.
∴△ADM是等边三角形.
∴∠ADM=60°.又
∵∠DAB=90°,
∴∠B=30°.
∴∠C=30°.

查看更多完整答案,请扫码查看

关闭