2025年名校课堂八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册北师大版》

1.(2024·安徽)我国古代数学家张衡将圆周率取值为$\sqrt {10}$,祖冲之给出圆周率的一种分数形式的近似值为$\frac {22}{7}$.比较大小:$\sqrt {10}$
$\frac {22}{7}$.(填“>”或“<”)
答案:
2.比较大小:$\sqrt [3]{20}$
3.(填“>”或“<”)
答案:
3.兰生复旦校本经典题 综合实践活动课上,老师给出定理:对于任意两个正数a,b,若$a>b$,则$\sqrt {a}>\sqrt {b}$.随后讲解了一道例题:试比较$2\sqrt {3}和3\sqrt {2}$的大小.解:$(2\sqrt {3})^{2}= 12,(3\sqrt {2})^{2}= 18,$$\because 12<18,$$\therefore 2\sqrt {3}<3\sqrt {2}.$参考例题的解法,解答下列问题:(1)比较$-3\sqrt {5}和-5\sqrt {3}$的大小.解:$(3\sqrt{5})^{2}=$
45
,$(5\sqrt{3})^{2}=$
75
,$\because$
45<75
,$\therefore 3\sqrt{5}<5\sqrt{3}$。$\therefore$
$-3\sqrt{5}>-5\sqrt{3}$
。(2)比较$\sqrt {6}+\sqrt {2}和\sqrt {5}+\sqrt {3}$的大小.解:$(\sqrt{6}+\sqrt{2})^{2}=$
$8+4\sqrt{3}$
,$(\sqrt{5}+\sqrt{3})^{2}=$
$8+2\sqrt{15}$
,$\because (4\sqrt{3})^{2}=$
48
,$(2\sqrt{15})^{2}=$
60
48<60
,$\therefore 4\sqrt{3}<2\sqrt{15}$。$\therefore$
$8+4\sqrt{3}<8+2\sqrt{15}$
。$\therefore$
$\sqrt{6}+\sqrt{2}<\sqrt{5}+\sqrt{3}$
答案: 解:
(1) $(3\sqrt{5})^{2}=45$,$(5\sqrt{3})^{2}=75$,$\because 45<75$,$\therefore 3\sqrt{5}<5\sqrt{3}$。$\therefore -3\sqrt{5}>-5\sqrt{3}$。
(2) $(\sqrt{6}+\sqrt{2})^{2}=8+4\sqrt{3}$,$(\sqrt{5}+\sqrt{3})^{2}=8+2\sqrt{15}$,$\because (4\sqrt{3})^{2}=48$,$(2\sqrt{15})^{2}=60$,$48<60$,$\therefore 4\sqrt{3}<2\sqrt{15}$。$\therefore 8+4\sqrt{3}<8+2\sqrt{15}$。$\therefore \sqrt{6}+\sqrt{2}<\sqrt{5}+\sqrt{3}$。
4.课堂上,老师出了一道题:比较$\frac {\sqrt {19}-2}{3}与\frac {2}{3}$的大小.
小明的解法如下:
解:$\frac {\sqrt {19}-2}{3}-\frac {2}{3}= \frac {\sqrt {19}-2-2}{3}= \frac {\sqrt {19}-4}{3}.$
$\because 19>16,\therefore \sqrt {19}>4.\therefore \sqrt {19}-4>0.$
$\therefore \frac {\sqrt {19}-4}{3}>0.\therefore \frac {\sqrt {19}-2}{3}>\frac {2}{3}.$
我们把这种比较大小的方法称为作差法.
请利用上述方法比较实数$\frac {\sqrt {94}-3}{9}与\frac {2}{3}$的大小.
解:
$\frac{\sqrt{94}-3}{9}-\frac{2}{3}=\frac{\sqrt{94}-3}{9}-\frac{6}{9}=\frac{\sqrt{94}-9}{9}$。$\because 94>81$,$\therefore \sqrt{94}>9$。$\therefore \sqrt{94}-9>0$。$\therefore \frac{\sqrt{94}-9}{9}>0$。$\therefore \frac{\sqrt{94}-3}{9}>\frac{2}{3}$。
答案: 解:$\frac{\sqrt{94}-3}{9}-\frac{2}{3}=\frac{\sqrt{94}-3}{9}-\frac{6}{9}=\frac{\sqrt{94}-9}{9}$。$\because 94>81$,$\therefore \sqrt{94}>9$。$\therefore \sqrt{94}-9>0$。$\therefore \frac{\sqrt{94}-9}{9}>0$。$\therefore \frac{\sqrt{94}-3}{9}>\frac{2}{3}$。
5.用作商法比较大小:$\frac {\sqrt {7}}{\sqrt {5}}与\frac {\sqrt {5}}{2}$.
答案: 解:$\frac{\sqrt{7}}{\sqrt{5}}=\frac{2\sqrt{7}}{5}$,$\because (2\sqrt{7})^{2}=28$,$5^{2}=25$,$\therefore 2\sqrt{7}>5$。$\therefore \frac{2\sqrt{7}}{5}>1$。$\therefore \frac{\sqrt{7}}{\sqrt{5}}>\frac{\sqrt{5}}{2}$。
6.新考向 阅读理解认真阅读下列解答过程:比较$2-\sqrt {3}与\sqrt {3}-\sqrt {2}$的大小.
解:$\because \frac {1}{2-\sqrt {3}}= \frac {2+\sqrt {3}}{(2-\sqrt {3})(2+\sqrt {3})}= 2+\sqrt {3},$$\frac {1}{\sqrt {3}-\sqrt {2}}= \frac {\sqrt {3}+\sqrt {2}}{(\sqrt {3}-\sqrt {2})(\sqrt {3}+\sqrt {2})}= \sqrt {3}+\sqrt {2},$
又$\because 2>\sqrt {2},$
$\therefore 2+\sqrt {3}>\sqrt {3}+\sqrt {2}.\therefore \frac {1}{2-\sqrt {3}}>\frac {1}{\sqrt {3}-\sqrt {2}}.$$\therefore 2-\sqrt {3}<\sqrt {3}-\sqrt {2}.$
请仿照上述方法比较$\sqrt {6}-\sqrt {5}与\sqrt {5}-2$的大小.
解:$\because \frac{1}{\sqrt{6}-\sqrt{5}}=\frac{\sqrt{6}+\sqrt{5}}{(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})}=$
$\sqrt{6}+\sqrt{5}$
,$\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}=$
$\sqrt{5}+2$
,又$\because$
$\sqrt{6}>2$
,$\therefore$
$\sqrt{6}+\sqrt{5}>\sqrt{5}+2$
。$\therefore$
$\frac{1}{\sqrt{6}-\sqrt{5}}>\frac{1}{\sqrt{5}-2}$
。$\therefore$
$\sqrt{6}-\sqrt{5}<\sqrt{5}-2$
答案: 解:$\because \frac{1}{\sqrt{6}-\sqrt{5}}=\frac{\sqrt{6}+\sqrt{5}}{(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})}=\sqrt{6}+\sqrt{5}$,$\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}=\sqrt{5}+2$,又$\because \sqrt{6}>2$,$\therefore \sqrt{6}+\sqrt{5}>\sqrt{5}+2$。$\therefore \frac{1}{\sqrt{6}-\sqrt{5}}>\frac{1}{\sqrt{5}-2}$。$\therefore \sqrt{6}-\sqrt{5}<\sqrt{5}-2$。

查看更多完整答案,请扫码查看

关闭