2025年全优课堂考点集训与满分备考九年级数学下册冀教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优课堂考点集训与满分备考九年级数学下册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全优课堂考点集训与满分备考九年级数学下册冀教版》

13. (10分)如图,已知△ABC中,∠C = 90°,AC = 3,BC = 4,以点C为圆心作⊙C,半径为r.
(1)当r取什么值时,点A,B在⊙C外?
(2)当r取什么值时,点A在⊙C内,点B在⊙C外?
            第13题图
答案: 解:
(1)若点$A$,$B$在$\odot C$外,则$AC > r$,$\because AC = 3$,$\therefore 0 < r < 3$;
(2)若点$A$在$\odot C$内,点$B$在$\odot C$外,则$AC < r < BC$,$\because AC = 3$,$BC = 4$,$\therefore 3 < r < 4$.
14. (10分)几何直观 如图,在△ABC中,∠BAC = 90°,以AC为直径的⊙O交BC于点D,点E在AB上,连接DE并延长交CA的延长线于点F,且∠AEF = 2∠C.
(1)判断直线FD与⊙O的位置关系,并说明理由;
(2)若AE = 2,EF = 4,求⊙O的半径.
          第14题图
答案:
解:
(1)直线$FD$与$\odot O$相切.
理由:如图,连接$OD$,$\because\angle AEF = 2\angle C$,$\angle AOD = 2\angle C$,$\therefore\angle AEF = \angle AOD$,
$\because\angle AEF+\angle AED = 180^{\circ}$,$\therefore\angle AOD+\angle AED = 180^{\circ}$,$\because\angle BAC = 90^{\circ}$,$\therefore\angle ODF = 90^{\circ}$,$\because OD$是$\odot O$的半径,$\therefore$直线$FD$与$\odot O$相切;

(2)$\because\angle BAC = 90^{\circ}$,$AE = 2$,$EF = 4$,
$\therefore\angle F = 30^{\circ}$,$\therefore AF = \sqrt{3}AE = 2\sqrt{3}$,
$\because\angle ODF = 90^{\circ}$,$\therefore OF = 2OD$,$\because OA = OD$,
$\therefore OD = FA$,$\therefore\odot O$的半径为$2\sqrt{3}$.
15. (11分)如图,已知△ABC,其中∠A = 60°.
(1)请作出△ABC的内切圆⊙O;
(2)试求(1)中∠BOC的度数.
第15题图
答案:
解:
(1)如图,①分别作$\angle ABC$与$\angle ACB$的平分线,两角平分线的交点为点$O$;②过点$O$作$OD\perp BC$于点$D$;③以$O$为圆心,$OD$长为半径画圆,则$\odot O$为所求的$\triangle ABC$的内切圆;
B
(2)$\because\angle A = 60^{\circ}$,$\therefore\angle ABC+\angle ACB = 180^{\circ}-\angle A = 120^{\circ}$,$\because BO$,$CO$分别是$\angle ABC$与$\angle ACB$的平分线,
$\therefore\angle OBC=\frac{1}{2}\angle ABC$,$\angle OCB=\frac{1}{2}\angle ACB$,$\therefore\angle OBC+\angle OCB=\frac{1}{2}(\angle ABC+\angle ACB)=60^{\circ}$,$\therefore\angle BOC = 180^{\circ}-(\angle OBC+\angle OCB)=120^{\circ}$.
16. (11分)数形结合思想 如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OP = 4,∠OPA = 30°.求OC和AB的长.
第16题图
答案: 解:$\because PA$与$\odot O$相切于点$A$,
$\therefore\angle OAP = 90^{\circ}$.$\because$在$Rt\triangle OAP$中,$\angle OPA = 30^{\circ}$,$\therefore\angle AOP = 60^{\circ}$.
$\because AB\perp OP$,$\therefore\angle OAC = 90^{\circ}-60^{\circ}=30^{\circ}$,
$\therefore OA=\frac{1}{2}OP = 2$,$OC=\frac{1}{2}OA = 1$,
$\therefore AC=\sqrt{OA^{2}-OC^{2}}=\sqrt{2^{2}-1^{2}}=\sqrt{3}$,
又$\because OC\perp AB$,$\therefore AB = 2AC = 2\sqrt{3}$.
17. (13分)推理能力 如图,在△ABC中,AB = AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF = $\frac{1}{2}$∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB = 5,sin∠CBF = $\frac{\sqrt{5}}{5}$,求BC和BF的长.
            第17题图
答案:
解:
(1)证明:如图,连接$AE$,$\because AB$是$\odot O$的直径,$\therefore\angle AEB = 90^{\circ}$,$\therefore\angle 1+\angle 2 = 90^{\circ}$,$\because AB = AC$,$\therefore\angle 1=\frac{1}{2}\angle CAB$,
$\because\angle CBF=\frac{1}{2}\angle CAB$,$\therefore\angle 1=\angle CBF$,
$\therefore\angle CBF+\angle 2 = 90^{\circ}$,即$\angle ABF = 90^{\circ}$,
$\because AB$是$\odot O$的直径,
$\therefore$直线$BF$是$\odot O$的切线;
(2)如图,过点$C$作$CG\perp AB$于点$G$.
$\because\sin\angle CBF=\frac{\sqrt{5}}{5}$,$\angle 1=\angle CBF$,
$\therefore\sin\angle 1=\frac{\sqrt{5}}{5}$,$\because$在$Rt\triangle AEB$中,$\angle AEB = 90^{\circ}$,$AB = 5$,$\therefore BE = AB\cdot\sin\angle 1=\sqrt{5}$,$\because AB = AC$,$\angle AEB = 90^{\circ}$,$\therefore BC = 2BE = 2\sqrt{5}$,在$Rt\triangle ABE$中,$AE=\sqrt{AB^{2}-BE^{2}}=2\sqrt{5}$,$\therefore\sin\angle 2=\frac{AE}{AB}=\frac{2\sqrt{5}}{5}=\frac{CG}{BC}=\frac{CG}{2\sqrt{5}}$,$\cos\angle 2=\frac{BE}{AB}=\frac{\sqrt{5}}{5}=\frac{BG}{BC}=\frac{BG}{2\sqrt{5}}$,
$\therefore GC = 4$,$GB = 2$,$\therefore AG = 5 - 2 = 3$,
$\because\angle CGB = 90^{\circ}$,$\angle ABF = 90^{\circ}$,$\therefore GC// BF$,
$\therefore\triangle AGC\sim\triangle ABF$,$\therefore\frac{GC}{BF}=\frac{AG}{AB}$,
$\therefore BF=\frac{GC\cdot AB}{AG}=\frac{4\times5}{3}=\frac{20}{3}$.

查看更多完整答案,请扫码查看

关闭