2025年阳光夺冠九年级数学下册


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年阳光夺冠九年级数学下册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年阳光夺冠九年级数学下册》

18. (8分)如图,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$\angle A = 60^{\circ}$,$\angle A$,$\angle B$,$\angle C$的对边分别为$a$,$b$,$c$,$a + b = 3+\sqrt{3}$. 请你据此条件,解这个直角三角形.
答案: 解:由题意,易得$\angle B = 90^{\circ}-\angle A = 30^{\circ}$.
$\because \tan A=\frac{a}{b}=\sqrt{3}$,$\therefore a=\sqrt{3}b$.
又$\because a + b = 3+\sqrt{3}$,$\therefore a = 3$,$b=\sqrt{3}$,$\therefore c=\sqrt{a^{2}+b^{2}}=2\sqrt{3}$.
19. (9分)如图,$AD$是$\triangle ABC$的高,$\cos B=\frac{\sqrt{2}}{2}$,$\sin C=\frac{3}{5}$,$AC = 10$,求$\triangle ABC$的周长.
答案: $\triangle ABC$的周长为$24 + 6\sqrt{2}$.
20. (10分)将一副直角三角板按如图所示放置,点$C$在$FD$的延长线上,$AB// CF$,$\angle F = \angle ACB = 90^{\circ}$,$\angle E = 45^{\circ}$,$\angle A = 60^{\circ}$,$AC = 10$,试求$CD$的长.
DC
答案: 解:过点$B$作$BM\perp FD$于点$M$.
在$\triangle ACB$中,$\angle ACB = 90^{\circ}$,$\angle A = 60^{\circ}$,$AC = 10$,
$\therefore \angle ABC = 30^{\circ}$,$BC = AC\cdot\tan60^{\circ}=10\sqrt{3}$.
$\because AB// CF$,
$\therefore BM = BC\cdot\sin30^{\circ}=10\sqrt{3}\times\frac{1}{2}=5\sqrt{3}$,$CM = BC\cdot\cos30^{\circ}=10\sqrt{3}\times\frac{\sqrt{3}}{2}=15$.
在$\triangle EFD$中,$\angle F = 90^{\circ}$,$\angle E = 45^{\circ}$,
$\therefore \angle EDF = 45^{\circ}$,$\therefore MD = BM = 5\sqrt{3}$,
$\therefore CD = CM - MD = 15 - 5\sqrt{3}$.

查看更多完整答案,请扫码查看

关闭