2025年教材划重点高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年教材划重点高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年教材划重点高中数学必修第一册人教版》

第54页
例7
[四川成都2024高一月考]已知关于x的方程x² - 2x + a = 0.
(1)当a为何值时,方程的一个根大于1,另一个根小于1?
(2)当a为何值时,方程的一个根大于-1且小于1,另一个根大于2且小于3?
(3)当a为何值时,方程的两个根都大于0?
【解】(1)如图①,二次函数y=x² - 2x + a的图象是开口向上的抛物线,对称轴为直线x=1.
由方程x² - 2x + a = 0的一个根大于1,另一个根小于1,得1² - 2 + a<0,解得a<1,所以a的取值范围是{a|a<1}.
(2)由方程x² - 2x + a = 0的一个根大于-1且小于1,另一个根大于2且小于3,作出满足题意的二次函数y=x² - 2x + a的大致图象,如图②.
图
由图②知$\begin{cases}1 + 2 + a>0, \\1 - 2 + a<0, \\4 - 4 + a<0, \\9 - 6 + a>0,\end{cases}$解得-3<a<0,
所以a的取值范围是{a|-3<a<0}.
(3)方程x² - 2x + a = 0的两个根都大于0,则$\begin{cases}\Delta = 4 - 4a\geq0, \\a>0,\end{cases}$解得0<a≤1,所以a的取值范围是{a|0<a≤1}.
答案:

查看更多完整答案,请扫码查看

关闭