2025年5年高考3年模拟高中数学全一册人教B版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年高考3年模拟高中数学全一册人教B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年5年高考3年模拟高中数学全一册人教B版》

第92页
1.(概念深度理解)(2024全国甲理,10,5分,中)设$\alpha,\beta$为两个平面,$m,n$为两条直线,且$\alpha\cap\beta = m$.下述四个命题:
①若$m// n$,则$n//\alpha$或$n//\beta$
②若$m\perp n$,则$n\perp\alpha$或$n\perp\beta$
③若$n//\alpha$且$n//\beta$,则$m// n$
④若$n$与$\alpha,\beta$所成的角相等,则$m\perp n$
其中所有真命题的编号是( )
A.①③
B.②④
C.①②③
D.①③④
答案:
A 命题①,由$m// n,m\subset\alpha$,得$n\subset\alpha$或$n//\alpha$,若$n\subset\alpha,m// n,m\subset\beta$,则$n//\beta$,命题①正确;
在正方体$ABCD - A_{1}B_{1}C_{1}D_{1}$中,如图1所示,
B1图1
取平面$ADD_{1}A_{1}$为平面$\alpha$,平面$A_{1}B_{1}C_{1}D_{1}$为平面$\beta$,则$A_{1}D_{1}$为直线$m$,若$n$是$C_{1}D$,则$m\perp n$,但$n$不垂直于$\alpha$且$n$不垂直于$\beta$,命题②错误;
若$n$是$AC_{1}$,则$n$与平面$\alpha$、$\beta$所成角相等,但$m$不垂直于$n$,命题④错误;
命题③,如图2,过$n$作平面$\gamma$交$\alpha$于直线$a$,作平面$\delta$交平面$\beta$于直线$b$,由$n//\alpha,n\subset\gamma,\alpha\cap\gamma = a$得$n// a$,同理可得$n// b$。则$a// b$,
由$a// b,a\subset\alpha,b\not\subset\alpha$得$b//\alpha$,又$\alpha\cap\beta = m,b\subset\beta$,所以$b// m$,所以$m// n$,命题③正确,故选A。
2.(2024新课标Ⅰ,17,15分,中)如图,四棱锥$P - ABCD$中,$PA\perp$底面$ABCD$,$PA = AC = 2$,$BC = 1$,$AB=\sqrt{3}$.
(1)若$AD\perp PB$,证明:$AD//$平面$PBC$;
(2)若$AD\perp DC$,且二面角$A - CP - D$的正弦值为$\frac{\sqrt{42}}{7}$,求$AD$.
答案:
解析
(1) 证明:$\because PA\perp$平面$ABCD$,$AD\subset$平面$ABCD$,$\therefore PA\perp AD$。又$AD\perp PB$,$PA\cap PB = P$,$PA$,$PB\subset$平面$PAB$,$\therefore AD\perp$平面$PAB$。又$AB\subset$平面$PAB$,$\therefore AD\perp AB$。
在$\triangle ABC$中,因为$AC = 2$,$BC = 1$,$AB=\sqrt{3}$,$\therefore AC^{2}=BC^{2}+AB^{2}$,$\therefore AB\perp BC$。又$AD\perp AB$,且$AD$,$AB$,$BC$都在平面$ABCD$内,$\therefore AD// BC$。又$AD\not\subset$平面$PBC$,$BC\subset$平面$PBC$,$\therefore AD//$平面$PBC$。
(2) 以$DA$,$DC$所在直线分别为$x$轴,$y$轴,过$D$作平面$ABCD$的垂线为$z$轴建立如图所示的空间直角坐标系$D - xyz$,则$D(0,0,0)$。
C
设$AD = t$,$t\gt0$,则$DC=\sqrt{4 - t^{2}}$,$A(t,0,0)$,$P(t,0,2)$,$C(0,\sqrt{4 - t^{2}},0)$,则$\overrightarrow{AC}=(-t,\sqrt{4 - t^{2}},0)$,$\overrightarrow{AP}=(0,0,2)$,$\overrightarrow{DP}=(t,0,2)$,$\overrightarrow{DC}=(0,\sqrt{4 - t^{2}},0)$,
设平面$ACP$的法向量为$\boldsymbol{n}_{1}=(x_{1},y_{1},z_{1})$,
则$\begin{cases}\boldsymbol{n}_{1}\cdot\overrightarrow{AC}=0\\\boldsymbol{n}_{1}\cdot\overrightarrow{AP}=0\end{cases}$,即$\begin{cases}-tx_{1}+\sqrt{4 - t^{2}}y_{1}=0\\2z_{1}=0\end{cases}$,
令$x_{1}=\sqrt{4 - t^{2}}$,则$y_{1}=t$,则$\boldsymbol{n}_{1}=(\sqrt{4 - t^{2}},t,0)$,
设平面$CPD$的法向量为$\boldsymbol{n}_{2}=(x_{2},y_{2},z_{2})$,
则$\begin{cases}\boldsymbol{n}_{2}\cdot\overrightarrow{DP}=0\\\boldsymbol{n}_{2}\cdot\overrightarrow{DC}=0\end{cases}$,$\therefore\begin{cases}tx_{2}+2z_{2}=0\\\sqrt{4 - t^{2}}y_{2}=0\end{cases}$,
令$z_{2}=t$,则$x_{2}=-2$,则$\boldsymbol{n}_{2}=(-2,0,t)$,
$\because$二面角$A - CP - D$的正弦值为$\frac{\sqrt{42}}{7}$,且由图可知二面角$A - CP - D$为锐二面角,
$\therefore$二面角$A - CP - D$的余弦值为$\sqrt{1 - (\frac{\sqrt{42}}{7})^{2}}=\frac{\sqrt{7}}{7}$,
$\therefore\frac{\sqrt{7}}{7}=|\cos\langle\boldsymbol{n}_{1},\boldsymbol{n}_{2}\rangle|=\frac{|\boldsymbol{n}_{1}\cdot\boldsymbol{n}_{2}|}{|\boldsymbol{n}_{1}||\boldsymbol{n}_{2}|}=\frac{2\sqrt{4 - t^{2}}}{2\sqrt{t^{2}+4}}$,
$\therefore t=\sqrt{3}$(舍负),$\therefore AD=\sqrt{3}$。
1.(2022全国乙,文9,理7,5分,中)在正方体$ABCD - A_{1}B_{1}C_{1}D_{1}$中,$E,F$分别为$AB,BC$的中点,则( )
A.平面$B_{1}EF\perp$平面$BDD_{1}$
B.平面$B_{1}EF\perp$平面$A_{1}BD$
C.平面$B_{1}EF//$平面$A_{1}AC$
D.平面$B_{1}EF//$平面$A_{1}C_{1}D$
答案:
A 如图所示,

在正方体$ABCD - A_{1}B_{1}C_{1}D_{1}$中,$AC\perp BD$,$EF// AC$,$\therefore EF\perp BD$,又$D_{1}D\perp$平面$ABCD$,$EF\subset$平面$ABCD$,$\therefore D_{1}D\perp EF$,又$D_{1}D\cap BD = D$,$\therefore EF\perp$平面$BDD_{1}$,又$EF\subset$平面$B_{1}EF$,$\therefore$平面$B_{1}EF\perp$平面$BDD_{1}$,故A选项正确。
对于B选项,连接$AC_{1}$,易得$AC_{1}\perp$平面$A_{1}BD$,且$AC_{1}$与平面$B_{1}EF$相交,故平面$B_{1}EF\perp$平面$A_{1}BD$不成立,故B选项错误;
对于C选项,直线$AA_{1}$与$B_{1}E$必相交,且$AA_{1}\subset$平面$A_{1}AC$,$B_{1}E\subset$平面$B_{1}EF$,故平面$B_{1}EF$与平面$A_{1}AC$有公共点,故平面$B_{1}EF$与平面$A_{1}AC$不平行,故C选项错误;
对于D选项,连接$AB_{1}$,$B_{1}C$,易知$A_{1}D// B_{1}C$,$A_{1}C_{1}// AC$,由线面平行的判定定理得$A_{1}D//$平面$AB_{1}C$,$A_{1}C_{1}//$平面$AB_{1}C$,又$A_{1}D\cap A_{1}C_{1}=A_{1}$,$A_{1}D$、$A_{1}C_{1}\subset$平面$A_{1}C_{1}D$,$\therefore$平面$A_{1}C_{1}D//$平面$AB_{1}C$,又$\because$点$B_{1}$既在平面$B_{1}EF$内,又在平面$AB_{1}C$内,$\therefore$平面$A_{1}C_{1}D$与平面$B_{1}EF$不平行,故D选项错误,故选A。
2.(2021浙江,6,4分,中)如图,已知正方体$ABCD - A_{1}B_{1}C_{1}D_{1}$,$M,N$分别是$A_{1}D,D_{1}B$的中点,则( )

A.直线$A_{1}D$与直线$D_{1}B$垂直,直线$MN//$平面$ABCD$
B.直线$A_{1}D$与直线$D_{1}B$平行,直线$MN\perp$平面$BDD_{1}B_{1}$
C.直线$A_{1}D$与直线$D_{1}B$相交,直线$MN//$平面$ABCD$
D.直线$A_{1}D$与直线$D_{1}B$异面,直线$MN\perp$平面$BDD_{1}B_{1}$
答案: A 连接$AD_{1}$,在正方形$ADD_{1}A_{1}$中,由$M$为$A_{1}D$的中点,可知$AD_{1}\cap A_{1}D = M$,且$M$为$AD_{1}$的中点,$AD_{1}\perp A_{1}D$。
又$\because N$为$D_{1}B$的中点,$\therefore MN// AB$。$\because AB\subset$平面$ABCD$,$MN\not\subset$平面$ABCD$,$\therefore MN//$平面$ABCD$。$\because AB\perp$平面$ADD_{1}A_{1}$,$A_{1}D\subset$平面$ADD_{1}A_{1}$,$\therefore AB\perp A_{1}D$,$\because AB\cap AD_{1}=A$,$\therefore A_{1}D\perp$平面$ABD_{1}$,$\therefore A_{1}D\perp D_{1}B$。故选A。
3.(2022新高考Ⅱ,20,12分,中)如图,$PO$是三棱锥$P - ABC$的高,$PA = PB$,$AB\perp AC$,$E$为$PB$的中点.
(1)证明:$OE//$平面$PAC$;
(2)若$\angle ABO = \angle CBO = 30^{\circ}$,$PO = 3$,$PA = 5$,求二面角$C - AE - B$的正弦值.
答案:
解析
(1) 证法一:连接$OA$,
$\because PO$是三棱锥$P - ABC$的高,$\therefore PO\perp$平面$ABC$,
$\because OA$,$OB\subset$平面$ABC$,$\therefore PO\perp OA$,$PO\perp OB$,
$\therefore\angle POA=\angle POB = 90^{\circ}$,
又$PA = PB$,$PO = PO$,$\therefore\triangle POA\cong\triangle POB$,$\therefore OA = OB$,
取$AB$的中点$D$,连接$OD$、$DE$,则$OD\perp AB$,

又$\because AB\perp AC$,$\therefore OD// AC$,
又$\because OD\not\subset$平面$PAC$,$AC\subset$平面$PAC$,
$\therefore OD//$平面$PAC$,
又$D$、$E$分别为$AB$、$PB$的中点,$\therefore DE// PA$,
又$\because DE\not\subset$平面$PAC$,$PA\subset$平面$PAC$,$\therefore DE//$平面$PAC$,
又$OD$、$DE\subset$平面$ODE$,$OD\cap DE = D$,
$\therefore$平面$ODE//$平面$PAC$,
又$OE\subset$平面$ODE$,$\therefore OE//$平面$PAC$。(面面平行的性质)
证法二:连接$OA$,$\because PO$是三棱锥$P - ABC$的高,
$\therefore PO\perp$平面$ABC$,
$\because OA$,$OB\subset$平面$ABC$,$\therefore PO\perp OA$,$PO\perp OB$,
$\therefore\angle POA=\angle POB = 90^{\circ}$,又$PA = PB$,$PO = PO$,
$\therefore\triangle POA\cong\triangle POB$,$\therefore OA = OB$,
延长$BO$交$AC$于点$F$,连接$PF$,
易知在$Rt\triangle ABF$中,$O$为$BF$的中点,
$\because E$为$PB$的中点,$\therefore OE// PF$,
又$OE\not\subset$平面$PAC$,$PF\subset$平面$PAC$,
$\therefore OE//$平面$PAC$。
(2) 取$AB$的中点$M$,连接$OM$,$OA$,以$M$为坐标原点,$MB$,$MO$所在直线分别为$x$,$y$轴,过点$M$且与平面$ABC$垂直的直线为$z$轴建立如图所示的空间直角坐标系。

$\because PO = 3$,$PA = 5$,$\therefore$结合(1)可知$OA = OB = 4$,
又$\angle ABO=\angle CBO = 30^{\circ}$,$\therefore OM = 2$,$MB = 2\sqrt{3}$,
$\therefore P(0,2,3)$,$B(2\sqrt{3},0,0)$,$A(-2\sqrt{3},0,0)$,$E(\sqrt{3},1,\frac{3}{2})$,
$\because AB\perp AC$,$\angle CBA = 60^{\circ}$,$AB = 4\sqrt{3}$,
$\therefore AC = 12$,$C(-2\sqrt{3},12,0)$。
设平面$AEB$的法向量为$\boldsymbol{n}_{1}=(x_{1},y_{1},z_{1})$,
$\because\overrightarrow{AB}=(4\sqrt{3},0,0)$,$\overrightarrow{AE}=(3\sqrt{3},1,\frac{3}{2})$,
$\therefore\begin{cases}\overrightarrow{AB}\cdot\boldsymbol{n}_{1}=0\\\overrightarrow{AE}\cdot\boldsymbol{n}_{1}=0\end{cases}$,即$\begin{cases}4\sqrt{3}x_{1}=0\\3\sqrt{3}x_{1}+y_{1}+\frac{3}{2}z_{1}=0\end{cases}$,
令$y_{1}=3$,则$z_{1}=-2$,$\therefore\boldsymbol{n}_{1}=(0,3,-2)$。
设平面$AEC$的法向量为$\boldsymbol{n}_{2}=(x_{2},y_{2},z_{2})$,
$\because\overrightarrow{AC}=(0,12,0)$,
$\therefore\begin{cases}\overrightarrow{AC}\cdot\boldsymbol{n}_{2}=0\\\overrightarrow{AE}\cdot\boldsymbol{n}_{2}=0\end{cases}$,即$\begin{cases}12y_{2}=0\\3\sqrt{3}x_{2}+y_{2}+\frac{3}{2}z_{2}=0\end{cases}$,
令$x_{2}=\sqrt{3}$,则$z_{2}=-6$,$\therefore\boldsymbol{n}_{2}=(\sqrt{3},0,-6)$,
$\therefore\cos\langle\boldsymbol{n}_{1},\boldsymbol{n}_{2}\rangle=\frac{\boldsymbol{n}_{1}\cdot\boldsymbol{n}_{2}}{|\boldsymbol{n}_{1}|\cdot|\boldsymbol{n}_{2}|}=\frac{12}{\sqrt{13}\times\sqrt{39}}=\frac{4\sqrt{3}}{13}$,
设二面角$C - AE - B$的平面角为$\theta$,则$\sin\theta=\sqrt{1-\cos^{2}\theta}=\frac{11}{13}$,
$\therefore$二面角$C - AE - B$的正弦值为$\frac{11}{13}$。

查看更多完整答案,请扫码查看

关闭