2025年5年高考3年模拟高中数学全一册人教B版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年高考3年模拟高中数学全一册人教B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第166页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
- 第246页
- 第247页
- 第248页
- 第249页
- 第250页
- 第251页
- 第252页
- 第253页
- 第254页
- 第255页
- 第256页
- 第257页
- 第258页
1.(2023天津,7,5分,易)鸢是鹰科的一种鸟,《诗经.大雅.旱麓》日“鸢飞戾天,鱼跃于渊”.鸢尾花因花瓣形如鸢尾而得名(图1),寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm),绘制对应散点图(图2).
计算得样本相关系数为0.8642,利用最小二乘法求得相应的经验回归方程为$\hat{y}=0.7501x + 0.6105$.根据以上信息,如下判断正确的为( )


A.花萼长度与花瓣长度不存在相关关系
B.花萼长度与花瓣长度负相关
C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值约为5.8612cm
D.若选取其他品种鸢尾花进行抽样,所得花萼长度与花瓣长度的样本相关系数一定为0.8642
计算得样本相关系数为0.8642,利用最小二乘法求得相应的经验回归方程为$\hat{y}=0.7501x + 0.6105$.根据以上信息,如下判断正确的为( )
A.花萼长度与花瓣长度不存在相关关系
B.花萼长度与花瓣长度负相关
C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值约为5.8612cm
D.若选取其他品种鸢尾花进行抽样,所得花萼长度与花瓣长度的样本相关系数一定为0.8642
答案:
1 C:题图2中的散点大致落在一条从左下角到右上角的直线附近,这说明成对样本数据之间存在正相关关系,故A、B错误;把$x = 7$代入经验回归方程$\hat{y}=0.7501x + 0.615$,得$\hat{y}=5.8612$,故C正确;由于样本发生变化,所以样本相关系数不一定相同,故D错误.
2.(2020课标II,文18,理18,12分,中)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据$(x_{i},y_{i})(i = 1,2,\cdots,20)$,其中$x_{i}$和$y_{i}$分别表示第$i$个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得$\sum_{i = 1}^{20}x_{i}=60$,$\sum_{i = 1}^{20}y_{i}=1200$,$\sum_{i = 1}^{20}(x_{i}-\overline{x})^{2}=80$,$\sum_{i = 1}^{20}(y_{i}-\overline{y})^{2}=9000$,$\sum_{i = 1}^{20}(x_{i}-\overline{x})(y_{i}-\overline{y})=800$.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘地块数);
(2)求样本$(x_{i},y_{i})(i = 1,2,\cdots,20)$的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数$r=\frac{\sum_{i = 1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i = 1}^{n}(x_{i}-\overline{x})^{2}\sum_{i = 1}^{n}(y_{i}-\overline{y})^{2}}}$,$\sqrt{2}\approx1.414$.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘地块数);
(2)求样本$(x_{i},y_{i})(i = 1,2,\cdots,20)$的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数$r=\frac{\sum_{i = 1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i = 1}^{n}(x_{i}-\overline{x})^{2}\sum_{i = 1}^{n}(y_{i}-\overline{y})^{2}}}$,$\sqrt{2}\approx1.414$.
答案:
2 解析
(1)由已知得样本平均数$\overline{y}=\frac{1}{20}\sum_{i = 1}^{20}y_{i}=60$,从而该地区这种野生动物数量的估计值为$60\times200 = 12000$.
(2)样本$(x_{i},y_{i})(i = 1,2,\cdots,20)$的相关系数
$r=\frac{\sum_{i = 1}^{20}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i = 1}^{20}(x_{i}-\overline{x})^{2}\sum_{i = 1}^{20}(y_{i}-\overline{y})^{2}}}=\frac{800}{\sqrt{80\times9000}}=\frac{2\sqrt{2}}{3}\approx0.94$.
(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.
理由如下:由
(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关. 由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.
(1)由已知得样本平均数$\overline{y}=\frac{1}{20}\sum_{i = 1}^{20}y_{i}=60$,从而该地区这种野生动物数量的估计值为$60\times200 = 12000$.
(2)样本$(x_{i},y_{i})(i = 1,2,\cdots,20)$的相关系数
$r=\frac{\sum_{i = 1}^{20}(x_{i}-\overline{x})(y_{i}-\overline{y})}{\sqrt{\sum_{i = 1}^{20}(x_{i}-\overline{x})^{2}\sum_{i = 1}^{20}(y_{i}-\overline{y})^{2}}}=\frac{800}{\sqrt{80\times9000}}=\frac{2\sqrt{2}}{3}\approx0.94$.
(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.
理由如下:由
(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关. 由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.
查看更多完整答案,请扫码查看