2025年5年高考3年模拟高中数学全一册人教B版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年高考3年模拟高中数学全一册人教B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第55页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
- 第246页
- 第247页
- 第248页
- 第249页
- 第250页
- 第251页
- 第252页
- 第253页
- 第254页
- 第255页
- 第256页
- 第257页
- 第258页
2.(2024湖北鄂东南省级高中联考,15)记△ABC的角A,B,C的对边分别为a,b,c,已知$\frac{\sin A - \sin B}{b + c}$ = $\frac{\sin C}{a + b}$.
(1)求角A;
(2)若点D是BC边上一点,且AB⊥AD,CD = 2BD,求sin∠ADB的值.
(1)求角A;
(2)若点D是BC边上一点,且AB⊥AD,CD = 2BD,求sin∠ADB的值.
答案:
解析:
(1)由$\frac{\sin A-\sin B}{b + c}=\frac{\sin C}{a + b}$及正弦定理得$\frac{a - b}{b + c}=\frac{c}{a + b}$,即$a^{2}=b^{2}+c^{2}+bc$。又$a^{2}=b^{2}+c^{2}-2bc\cos A$,$\therefore\cos A=-\frac{1}{2}$,$\therefore A=\frac{2\pi}{3}$。
(2)$\angle DAC=\angle BAC-\angle BAD=\frac{\pi}{6}$,记$\angle ADB=\alpha$,$\alpha\in(0,\frac{\pi}{2})$,则$C=\alpha-\angle DAC=\alpha-\frac{\pi}{6}$。在$Rt\triangle ABD$中,$AD = BD\cos\alpha$。①在$\triangle ADC$中,由正弦定理得$\frac{AD}{\sin(\alpha-\frac{\pi}{6})}=\frac{CD}{\sin\frac{\pi}{6}}$。②由①②及$CD = 2BD$得$\frac{\cos\alpha}{\sin(\alpha-\frac{\pi}{6})}=\frac{2}{\sin\frac{\pi}{6}}$,即$\frac{1}{\frac{\sqrt{3}}{2}\tan\alpha-\frac{1}{2}} = 4$,解得$\tan\alpha=\frac{\sqrt{3}}{2}$。由$\tan\alpha=\frac{\sqrt{3}}{2}$,$\sin^{2}\alpha+\cos^{2}\alpha = 1$,$\alpha\in(0,\frac{\pi}{2})$,解得$\sin\alpha=\frac{\sqrt{21}}{7}$。故$\sin\angle ADB=\frac{\sqrt{21}}{7}$。
(1)由$\frac{\sin A-\sin B}{b + c}=\frac{\sin C}{a + b}$及正弦定理得$\frac{a - b}{b + c}=\frac{c}{a + b}$,即$a^{2}=b^{2}+c^{2}+bc$。又$a^{2}=b^{2}+c^{2}-2bc\cos A$,$\therefore\cos A=-\frac{1}{2}$,$\therefore A=\frac{2\pi}{3}$。
(2)$\angle DAC=\angle BAC-\angle BAD=\frac{\pi}{6}$,记$\angle ADB=\alpha$,$\alpha\in(0,\frac{\pi}{2})$,则$C=\alpha-\angle DAC=\alpha-\frac{\pi}{6}$。在$Rt\triangle ABD$中,$AD = BD\cos\alpha$。①在$\triangle ADC$中,由正弦定理得$\frac{AD}{\sin(\alpha-\frac{\pi}{6})}=\frac{CD}{\sin\frac{\pi}{6}}$。②由①②及$CD = 2BD$得$\frac{\cos\alpha}{\sin(\alpha-\frac{\pi}{6})}=\frac{2}{\sin\frac{\pi}{6}}$,即$\frac{1}{\frac{\sqrt{3}}{2}\tan\alpha-\frac{1}{2}} = 4$,解得$\tan\alpha=\frac{\sqrt{3}}{2}$。由$\tan\alpha=\frac{\sqrt{3}}{2}$,$\sin^{2}\alpha+\cos^{2}\alpha = 1$,$\alpha\in(0,\frac{\pi}{2})$,解得$\sin\alpha=\frac{\sqrt{21}}{7}$。故$\sin\angle ADB=\frac{\sqrt{21}}{7}$。
3.(2024山东济南二模,15)如图,在平面四边形ABCD中,BC⊥CD,AB = BC = $\sqrt{2}$,∠ABC = θ,120° ≤ θ < 180°.
(1)若θ = 120°,AD = 3,求∠ADC的大小;
(2)若CD = $\sqrt{6}$,求四边形ABCD面积的最大值.

(1)若θ = 120°,AD = 3,求∠ADC的大小;
(2)若CD = $\sqrt{6}$,求四边形ABCD面积的最大值.
答案:
解析:
(1)因为$\angle ABC = 120^{\circ}$,$AB = BC=\sqrt{2}$,所以$\angle ACB=\angle BAC = 30^{\circ}$,$AC = 2AB\cos30^{\circ}=\sqrt{6}$,又$BC\perp CD$,所以$\angle ACD = 90^{\circ}-\angle ACB = 60^{\circ}$,在$\triangle ACD$中,由正弦定理得$\frac{AD}{\sin\angle ACD}=\frac{AC}{\sin\angle ADC}$,所以$\sin\angle ADC=\frac{AC\sin\angle ACD}{AD}=\frac{\sqrt{6}\sin60^{\circ}}{3}=\frac{\sqrt{2}}{2}$,又$AC<AD$,所以$\angle ADC = 45^{\circ}$。
(2)在$\triangle ABC$中,$AB = BC=\sqrt{2}$,$\angle ABC=\theta$,$S_{\triangle ABC}=\frac{1}{2}AB\cdot BC\cdot\sin\angle ABC=\frac{1}{2}\times\sqrt{2}\times\sqrt{2}\times\sin\theta=\sin\theta$,$\frac{AC}{2}=\sin\frac{\theta}{2}\Rightarrow AC = 2\sqrt{2}\sin\frac{\theta}{2}$,在$\triangle ACD$中,$\angle ACD = 90^{\circ}-\angle ACB = 90^{\circ}-\frac{180^{\circ}-\theta}{2}=\frac{\theta}{2}$,又$CD=\sqrt{6}$,所以$S_{\triangle ACD}=\frac{1}{2}AC\cdot CD\cdot\sin\angle ACD=\frac{1}{2}\cdot2\sqrt{2}\sin\frac{\theta}{2}\cdot\sqrt{6}\cdot\sin\frac{\theta}{2}=\sqrt{3}-\sqrt{3}\cos\theta$,所以四边形$ABCD$的面积$S = S_{\triangle ABC}+S_{\triangle ACD}=\sin\theta+\sqrt{3}-\sqrt{3}\cos\theta=\sqrt{3}+2\sin(\theta - 60^{\circ})$,因为$120^{\circ}\leqslant\theta<180^{\circ}$,所以$60^{\circ}\leqslant\theta - 60^{\circ}<120^{\circ}$,所以当$\theta - 60^{\circ}=90^{\circ}$,即$\theta = 150^{\circ}$时,$S_{max}=\sqrt{3}+2$,故四边形$ABCD$面积的最大值为$\sqrt{3}+2$。
(1)因为$\angle ABC = 120^{\circ}$,$AB = BC=\sqrt{2}$,所以$\angle ACB=\angle BAC = 30^{\circ}$,$AC = 2AB\cos30^{\circ}=\sqrt{6}$,又$BC\perp CD$,所以$\angle ACD = 90^{\circ}-\angle ACB = 60^{\circ}$,在$\triangle ACD$中,由正弦定理得$\frac{AD}{\sin\angle ACD}=\frac{AC}{\sin\angle ADC}$,所以$\sin\angle ADC=\frac{AC\sin\angle ACD}{AD}=\frac{\sqrt{6}\sin60^{\circ}}{3}=\frac{\sqrt{2}}{2}$,又$AC<AD$,所以$\angle ADC = 45^{\circ}$。
(2)在$\triangle ABC$中,$AB = BC=\sqrt{2}$,$\angle ABC=\theta$,$S_{\triangle ABC}=\frac{1}{2}AB\cdot BC\cdot\sin\angle ABC=\frac{1}{2}\times\sqrt{2}\times\sqrt{2}\times\sin\theta=\sin\theta$,$\frac{AC}{2}=\sin\frac{\theta}{2}\Rightarrow AC = 2\sqrt{2}\sin\frac{\theta}{2}$,在$\triangle ACD$中,$\angle ACD = 90^{\circ}-\angle ACB = 90^{\circ}-\frac{180^{\circ}-\theta}{2}=\frac{\theta}{2}$,又$CD=\sqrt{6}$,所以$S_{\triangle ACD}=\frac{1}{2}AC\cdot CD\cdot\sin\angle ACD=\frac{1}{2}\cdot2\sqrt{2}\sin\frac{\theta}{2}\cdot\sqrt{6}\cdot\sin\frac{\theta}{2}=\sqrt{3}-\sqrt{3}\cos\theta$,所以四边形$ABCD$的面积$S = S_{\triangle ABC}+S_{\triangle ACD}=\sin\theta+\sqrt{3}-\sqrt{3}\cos\theta=\sqrt{3}+2\sin(\theta - 60^{\circ})$,因为$120^{\circ}\leqslant\theta<180^{\circ}$,所以$60^{\circ}\leqslant\theta - 60^{\circ}<120^{\circ}$,所以当$\theta - 60^{\circ}=90^{\circ}$,即$\theta = 150^{\circ}$时,$S_{max}=\sqrt{3}+2$,故四边形$ABCD$面积的最大值为$\sqrt{3}+2$。
4.(2024福建九地市质量检测,15)△ABC中,角A,B,C的对边分别是a,b,c,且asinC = csinB,C = $\frac{2\pi}{3}$.
(1)求B的大小;
(2)若△ABC的面积为$\frac{3\sqrt{3}}{4}$,求BC边上中线的长.
(1)求B的大小;
(2)若△ABC的面积为$\frac{3\sqrt{3}}{4}$,求BC边上中线的长.
答案:
解析:
(1)$\because a\sin C = c\sin B$,$\therefore$由正弦定理,得$\sin A\sin C=\sin C\sin B$,$\because 0<C<\pi$,$\therefore\sin C>0$,$\therefore\sin A=\sin B$,$\because 0<A<\pi$,$0<B<\pi$,$\therefore A = B$或$A + B=\pi$(舍去),$\because A + B + C=\pi$,且$C=\frac{2\pi}{3}$,$\therefore B=\frac{\pi}{6}$。
(2)依题意得$\frac{3\sqrt{3}}{4}=\frac{1}{2}ab\sin C$,$\because A = B$,$\therefore a = b$,$\therefore\frac{3\sqrt{3}}{4}=\frac{1}{2}a^{2}\sin\frac{2\pi}{3}=\frac{\sqrt{3}a^{2}}{4}$,解得$a=\sqrt{3}$,设边$BC$的中点为$D$,则$CD=\frac{\sqrt{3}}{2}$,在$\triangle ACD$中,由余弦定理得$AD^{2}=AC^{2}+CD^{2}-2AC\cdot CD\cos C=3+\frac{3}{4}-2\times\sqrt{3}\times\frac{\sqrt{3}}{2}\times\cos\frac{2\pi}{3}=\frac{21}{4}$,$\therefore BC$边上中线的长为$\frac{\sqrt{21}}{2}$。
(1)$\because a\sin C = c\sin B$,$\therefore$由正弦定理,得$\sin A\sin C=\sin C\sin B$,$\because 0<C<\pi$,$\therefore\sin C>0$,$\therefore\sin A=\sin B$,$\because 0<A<\pi$,$0<B<\pi$,$\therefore A = B$或$A + B=\pi$(舍去),$\because A + B + C=\pi$,且$C=\frac{2\pi}{3}$,$\therefore B=\frac{\pi}{6}$。
(2)依题意得$\frac{3\sqrt{3}}{4}=\frac{1}{2}ab\sin C$,$\because A = B$,$\therefore a = b$,$\therefore\frac{3\sqrt{3}}{4}=\frac{1}{2}a^{2}\sin\frac{2\pi}{3}=\frac{\sqrt{3}a^{2}}{4}$,解得$a=\sqrt{3}$,设边$BC$的中点为$D$,则$CD=\frac{\sqrt{3}}{2}$,在$\triangle ACD$中,由余弦定理得$AD^{2}=AC^{2}+CD^{2}-2AC\cdot CD\cos C=3+\frac{3}{4}-2\times\sqrt{3}\times\frac{\sqrt{3}}{2}\times\cos\frac{2\pi}{3}=\frac{21}{4}$,$\therefore BC$边上中线的长为$\frac{\sqrt{21}}{2}$。
5.(2024江西重点中学协作体联考,16)在△ABC中,内角A,B,C所对的边分别为a,b,c,其外接圆的半径为2$\sqrt{3}$,且bcosC = a + $\frac{\sqrt{3}}{3}$csinB.
(1)求角B;
(2)若∠ABC的平分线交AC于点D,BD = $\sqrt{3}$,点E在线段AC上,EC = 2EA,求△BDE的面积.
(1)求角B;
(2)若∠ABC的平分线交AC于点D,BD = $\sqrt{3}$,点E在线段AC上,EC = 2EA,求△BDE的面积.
答案:
解析:
(1)由正弦定理可得$\sin B\cos C=\sin A+\frac{\sqrt{3}}{3}\sin C\sin B$。又$\sin A=\sin(B + C)=\sin B\cos C+\cos B\sin C$,则$\sin C\cos B+\frac{\sqrt{3}}{3}\sin C\sin B = 0$。$\because C\in(0,\pi)$,$\therefore\cos B+\frac{\sqrt{3}}{3}\sin B = 0$,即$\tan B=-\sqrt{3}$。又$B\in(0,\pi)$,$\therefore B=\frac{2\pi}{3}$。
(2)由
(1)可知$B=\frac{2\pi}{3}$,$\because\triangle ABC$的外接圆的半径为$2\sqrt{3}$,$\therefore$由正弦定理得$\frac{b}{\sin B}=4\sqrt{3}$,即$b = 6$,$\because BD$平分$\angle ABC$,$\therefore\angle CBD=\angle ABD=\frac{1}{2}\angle ABC=\frac{\pi}{3}$。由$S_{\triangle ABC}=S_{\triangle BCD}+S_{\triangle ABD}$,可得$\frac{1}{2}ac\sin\frac{2\pi}{3}=\frac{1}{2}a\cdot\sqrt{3}\sin\frac{\pi}{3}+\frac{1}{2}c\cdot\sqrt{3}\sin\frac{\pi}{3}$,即$ac=\sqrt{3}(a + c)$①,由余弦定理得$b^{2}=a^{2}+c^{2}-2ac\cos\frac{2\pi}{3}$,即$(a + c)^{2}-ac = 36$②,由①②可得$a = c = 2\sqrt{3}$。则$BD\perp AC$,$\therefore AC = 2CD = 6$,又$\because EC = 2AE$,则$DE = 1$,故$S_{\triangle BDE}=\frac{1}{2}\times1\times\sqrt{3}=\frac{\sqrt{3}}{2}$。
(1)由正弦定理可得$\sin B\cos C=\sin A+\frac{\sqrt{3}}{3}\sin C\sin B$。又$\sin A=\sin(B + C)=\sin B\cos C+\cos B\sin C$,则$\sin C\cos B+\frac{\sqrt{3}}{3}\sin C\sin B = 0$。$\because C\in(0,\pi)$,$\therefore\cos B+\frac{\sqrt{3}}{3}\sin B = 0$,即$\tan B=-\sqrt{3}$。又$B\in(0,\pi)$,$\therefore B=\frac{2\pi}{3}$。
(2)由
(1)可知$B=\frac{2\pi}{3}$,$\because\triangle ABC$的外接圆的半径为$2\sqrt{3}$,$\therefore$由正弦定理得$\frac{b}{\sin B}=4\sqrt{3}$,即$b = 6$,$\because BD$平分$\angle ABC$,$\therefore\angle CBD=\angle ABD=\frac{1}{2}\angle ABC=\frac{\pi}{3}$。由$S_{\triangle ABC}=S_{\triangle BCD}+S_{\triangle ABD}$,可得$\frac{1}{2}ac\sin\frac{2\pi}{3}=\frac{1}{2}a\cdot\sqrt{3}\sin\frac{\pi}{3}+\frac{1}{2}c\cdot\sqrt{3}\sin\frac{\pi}{3}$,即$ac=\sqrt{3}(a + c)$①,由余弦定理得$b^{2}=a^{2}+c^{2}-2ac\cos\frac{2\pi}{3}$,即$(a + c)^{2}-ac = 36$②,由①②可得$a = c = 2\sqrt{3}$。则$BD\perp AC$,$\therefore AC = 2CD = 6$,又$\because EC = 2AE$,则$DE = 1$,故$S_{\triangle BDE}=\frac{1}{2}\times1\times\sqrt{3}=\frac{\sqrt{3}}{2}$。
查看更多完整答案,请扫码查看