2025年5年高考3年模拟高中数学全一册人教B版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年5年高考3年模拟高中数学全一册人教B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第42页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
- 第246页
- 第247页
- 第248页
- 第249页
- 第250页
- 第251页
- 第252页
- 第253页
- 第254页
- 第255页
- 第256页
- 第257页
- 第258页
1. (2024广东深圳一模,1)若角α的终边过点(4,3),则sin(α+$\frac{\pi}{2}$)= ( )
A. $\frac{4}{5}$
B. $-\frac{4}{5}$
C. $\frac{3}{5}$
D. $-\frac{3}{5}$
A. $\frac{4}{5}$
B. $-\frac{4}{5}$
C. $\frac{3}{5}$
D. $-\frac{3}{5}$
答案:
$\because$角$\alpha$的终边过点$(4,3)$,$\therefore\cos\alpha=\frac{4}{\sqrt{4^{2}+3^{2}}}=\frac{4}{5}$,$\therefore\sin(\alpha+\frac{\pi}{2})=\cos\alpha=\frac{4}{5}$. 故选 A.
2. (2024浙江宁波二模,2)若α为锐角,sinα=$\frac{4}{5}$,则sin(α+$\frac{\pi}{3}$)= ( )
A. $\frac{4 + 3\sqrt{3}}{10}$
B. $\frac{4 - 3\sqrt{3}}{10}$
C. $\frac{3 + 4\sqrt{3}}{10}$
D. $\frac{3 - 4\sqrt{3}}{10}$
A. $\frac{4 + 3\sqrt{3}}{10}$
B. $\frac{4 - 3\sqrt{3}}{10}$
C. $\frac{3 + 4\sqrt{3}}{10}$
D. $\frac{3 - 4\sqrt{3}}{10}$
答案:
因为$\alpha$为锐角,$\sin\alpha=\frac{4}{5}$,所以$\cos\alpha=\frac{3}{5}$,$\sin(\alpha+\frac{\pi}{3})=\sin\alpha\cos\frac{\pi}{3}+\cos\alpha\sin\frac{\pi}{3}=\frac{1}{2}\sin\alpha+\frac{\sqrt{3}}{2}\cos\alpha=\frac{1}{2}\times\frac{4}{5}+\frac{\sqrt{3}}{2}\times\frac{3}{5}=\frac{4 + 3\sqrt{3}}{10}$. 故选 A.
3. (2024湖南长沙师大附中月考,5)已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(-1,t),若sinα=$\frac{2\sqrt{5}}{5}$,则tan(α - $\frac{\pi}{4}$)= ( )
A. -3
B. $-\frac{1}{3}$
C. 3
D. $\frac{1}{3}$
A. -3
B. $-\frac{1}{3}$
C. 3
D. $\frac{1}{3}$
答案:
由三角函数的定义可知$\frac{t}{\sqrt{1 + t^{2}}}=\frac{2\sqrt{5}}{5}$,解得$t = 2$,所以角$\alpha$终边上一点为$(-1,2)$,$\tan\alpha=\frac{2}{-1}=-2$,$\tan(\alpha-\frac{\pi}{4})=\frac{\tan\alpha - 1}{1 + \tan\alpha}=3$,故选 C.
4. (2024甘肃二诊,7)计算$\frac{1}{2\cos\frac{3}{5}\pi}+\frac{\cos\frac{2}{5}\pi}{\cos\frac{4}{5}\pi}=$ ( )
A. 2
B. $-\frac{1}{2}$
C. -1
D. -2
A. 2
B. $-\frac{1}{2}$
C. -1
D. -2
答案:
$\begin{aligned}&\frac{1}{2\cos\frac{3\pi}{5}}+\frac{\cos\frac{2\pi}{5}}{\cos\frac{4\pi}{5}}=\frac{1}{-2\cos\frac{2\pi}{5}}+\frac{\cos\frac{2\pi}{5}}{\cos\frac{4\pi}{5}}\\=&\frac{-\cos\frac{4\pi}{5}+2\cos^{2}\frac{2\pi}{5}}{2\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}=\frac{-(2\cos^{2}\frac{2\pi}{5}-1)+2\cos^{2}\frac{2\pi}{5}}{2\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}}\\=&\frac{1}{-2\cos\frac{2\pi}{5}\cdot\cos\frac{1}{5}\pi}=-\frac{\sin\frac{1}{5}\pi}{2\sin\frac{1}{5}\pi\cos\frac{1}{5}\pi\cos\frac{2}{5}\pi}\\=&-\frac{\sin\frac{1}{5}\pi}{\sin\frac{2}{5}\pi\cos\frac{2}{5}\pi}=-\frac{\sin\frac{1}{5}\pi}{\frac{1}{2}\sin\frac{4}{5}\pi}=-\frac{-2\sin\frac{1}{5}\pi}{\sin\frac{1}{5}\pi}=-2\end{aligned}$
故选 D.
故选 D.
5. (2024山东新高考联合质量测评,7)已知$\frac{\cos2\theta}{\cos(\frac{\pi}{4}-\theta)}=\frac{3\sqrt{2}}{4}$,则sin2θ= ( )
A. $-\frac{1}{4}$
B. $\frac{1}{4}$
C. $-\frac{7}{16}$
D. $\frac{7}{16}$
A. $-\frac{1}{4}$
B. $\frac{1}{4}$
C. $-\frac{7}{16}$
D. $\frac{7}{16}$
答案:
$\frac{\cos2\theta}{\cos(\frac{\pi}{4}-\theta)}=\frac{\cos^{2}\theta-\sin^{2}\theta}{\frac{\sqrt{2}}{2}(\sin\theta+\cos\theta)}=\sqrt{2}(\cos\theta-\sin\theta)=\frac{3\sqrt{2}}{4}$,即$\cos\theta-\sin\theta=\frac{3}{4}$,两边平方得$\cos^{2}\theta - 2\sin\theta\cos\theta+\sin^{2}\theta=1-\sin2\theta=\frac{9}{16}$,解得$\sin2\theta=\frac{7}{16}$. 故选 D.
6. (2024安徽皖北协作区联考,6)已知tan(α - β)=$\frac{3}{4}$,sin(α - β)=3cos(α + β),则tanα - tanβ= ( )
A. $\frac{1}{2}$
B. $\frac{3}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{3}$
A. $\frac{1}{2}$
B. $\frac{3}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{3}$
答案:
$\sin(\alpha-\beta)=3\cos(\alpha+\beta)$,所以$\sin\alpha\cos\beta-\cos\alpha\sin\beta=3\cos\alpha\cos\beta-3\sin\alpha\sin\beta$. 两边同除以$\cos\alpha\cos\beta$得$\tan\alpha-\tan\beta=3 - 3\tan\alpha\tan\beta$. 由$\tan(\alpha-\beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{3}{4}$,得$3 + 3\tan\alpha\tan\beta=4(\tan\alpha-\tan\beta)$,则$\tan\alpha-\tan\beta=3-[4(\tan\alpha-\tan\beta)-3]$,解得$\tan\alpha-\tan\beta=\frac{6}{5}$.选C
7. (2024河北石家庄二模,7)已知α∈(0,$\frac{\pi}{2}$),且cos(α - $\frac{\pi}{4}$)=2cos2α,则tan(α + $\frac{\pi}{4}$)= ( )
A. $\sqrt{3}$
B. $\sqrt{5}$
C. $\sqrt{7}$
D. $\sqrt{15}$
A. $\sqrt{3}$
B. $\sqrt{5}$
C. $\sqrt{7}$
D. $\sqrt{15}$
答案:
$\because\cos(\alpha-\frac{\pi}{4})=2\cos2\alpha$,$\therefore\frac{\sqrt{2}}{2}(\cos\alpha+\sin\alpha)=2(\cos^{2}\alpha-\sin^{2}\alpha)=2(\cos\alpha+\sin\alpha)(\cos\alpha-\sin\alpha)$,$\because\alpha\in(0,\frac{\pi}{2})$,$\therefore\cos\alpha+\sin\alpha>0$,$\therefore\frac{\sqrt{2}}{2}=2(\cos\alpha-\sin\alpha)$,$\cos\alpha-\sin\alpha=\frac{\sqrt{2}}{4}$,两边平方得$1 - 2\sin\alpha\cos\alpha=\frac{1}{8}$,$\therefore\sin2\alpha=\frac{7}{8}$,$\cos(\alpha-\frac{\pi}{4})=\frac{\sqrt{2}}{2}(\cos\alpha+\sin\alpha)=2\sqrt{1-\sin^{2}2\alpha}=\frac{\sqrt{15}}{4}$,则$\cos\alpha+\sin\alpha=\frac{\sqrt{30}}{4}$,$\therefore\tan(\alpha+\frac{\pi}{4})=\frac{1+\tan\alpha}{1-\tan\alpha}=\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=\frac{\frac{\sqrt{30}}{4}}{\frac{\sqrt{2}}{4}}=\sqrt{15}$. 故选 D.
8. (2024湖南长沙长郡中学二模,7)已知sinα - cosα=$\frac{1}{5}$,0≤α≤π,则sin(2α - $\frac{\pi}{4}$)= ( )
A. $-\frac{17\sqrt{2}}{50}$
B. $\frac{17\sqrt{2}}{50}$
C. $-\frac{31\sqrt{2}}{50}$
D. $\frac{31\sqrt{2}}{50}$
A. $-\frac{17\sqrt{2}}{50}$
B. $\frac{17\sqrt{2}}{50}$
C. $-\frac{31\sqrt{2}}{50}$
D. $\frac{31\sqrt{2}}{50}$
答案:
将$\sin\alpha-\cos\alpha=\frac{1}{5}$平方得$1 - 2\sin\alpha\cos\alpha=\frac{1}{25}$,所以$2\sin\alpha\cos\alpha=\frac{24}{25}$,则$\alpha\in(0,\frac{\pi}{2})$,$(\sin\alpha+\cos\alpha)^{2}=1 + 2\sin\alpha\cos\alpha=1+\frac{24}{25}=\frac{49}{25}$,从而$\sin\alpha+\cos\alpha=\frac{7}{5}$. 联立$\begin{cases}\sin\alpha-\cos\alpha=\frac{1}{5}\\\sin\alpha+\cos\alpha=\frac{7}{5}\end{cases}$解得$\begin{cases}\sin\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{cases}$. 所以$\sin2\alpha=2\sin\alpha\cos\alpha=\frac{24}{25}$,$\cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha=(\frac{3}{5})^{2}-(\frac{4}{5})^{2}=-\frac{7}{25}$. 故$\sin(2\alpha-\frac{\pi}{4})=\frac{\sqrt{2}}{2}(\sin2\alpha-\cos2\alpha)=\frac{\sqrt{2}}{2}\times[\frac{24}{25}-(-\frac{7}{25})]=\frac{31\sqrt{2}}{50}$.
故选D
故选D
9. (2024福建莆田二模,7)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,把它的终边绕原点逆时针旋转角β后经过点($\frac{4}{5}$,$\frac{3}{5}$)(tanβ=$\frac{5}{12}$,β∈(0,$\frac{\pi}{2}$)),则sinα= ( )
A. $\frac{16}{65}$
B. $\frac{33}{65}$
C. $\frac{56}{65}$
D. $\frac{63}{65}$
A. $\frac{16}{65}$
B. $\frac{33}{65}$
C. $\frac{56}{65}$
D. $\frac{63}{65}$
答案:
因为$\tan\beta=\frac{5}{12}$,$\beta\in(0,\frac{\pi}{2})$,所以$\tan\beta=\frac{\sin\beta}{\cos\beta}=\frac{5}{12}$,则$\sin\beta=\frac{5}{12}\cos\beta$,又$\sin^{2}\beta+\cos^{2}\beta=1$,所以$\cos^{2}\beta=\frac{144}{169}$,由$\beta\in(0,\frac{\pi}{2})$得$\cos\beta=\frac{12}{13}$,则$\sin\beta=\frac{5}{13}$,由题意可知角$\alpha+\beta$的终边经过点$(\frac{4}{5},\frac{3}{5})$,则$\sin(\alpha+\beta)=\frac{3}{5}$,$\cos(\alpha+\beta)=\frac{4}{5}$,所以$\sin\alpha=\sin[(\alpha+\beta)-\beta]=\sin(\alpha+\beta)\cos\beta-\cos(\alpha+\beta)\sin\beta=\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13}=\frac{16}{65}$. 故选 A.
10. (2024广东广州二模,12)已知复数z = $\frac{2\cos\theta + i\sin\theta}{1 + i}$(θ∈R)的实部为0,则tan2θ=_______.
答案:
答案:$\frac{4}{3}$
解析:$z=\frac{(2\cos\theta+i\sin\theta)(1 - i)}{(1 + i)(1 - i)}=\frac{2\cos\theta+\sin\theta+(\sin\theta-2\cos\theta)i}{2}$的实部为$0$,所以$\frac{2\cos\theta+\sin\theta}{2}=0$,即$2\cos\theta+\sin\theta=0$,$\tan\theta=-2$,则$\tan2\theta=\frac{2\tan\theta}{1-\tan^{2}\theta}=\frac{2\times(-2)}{1-(-2)^{2}}=\frac{4}{3}$.
解析:$z=\frac{(2\cos\theta+i\sin\theta)(1 - i)}{(1 + i)(1 - i)}=\frac{2\cos\theta+\sin\theta+(\sin\theta-2\cos\theta)i}{2}$的实部为$0$,所以$\frac{2\cos\theta+\sin\theta}{2}=0$,即$2\cos\theta+\sin\theta=0$,$\tan\theta=-2$,则$\tan2\theta=\frac{2\tan\theta}{1-\tan^{2}\theta}=\frac{2\times(-2)}{1-(-2)^{2}}=\frac{4}{3}$.
11. (2024广东揭阳二模,13)已知sin²α=sin2α,则tanα=_______,tan(α + $\frac{\pi}{4}$)=_______.
答案:
答案:$0$或$2$;$1$或$-3$
解析:由题意得$\sin^{2}\alpha=2\sin\alpha\cos\alpha$,得$\sin\alpha=0$或$\sin\alpha-2\cos\alpha=0$,即$\tan\alpha=0$或$2$,所以$\tan(\alpha+\frac{\pi}{4})=\frac{\tan\alpha+1}{1-\tan\alpha}=1$或$-3$.
解析:由题意得$\sin^{2}\alpha=2\sin\alpha\cos\alpha$,得$\sin\alpha=0$或$\sin\alpha-2\cos\alpha=0$,即$\tan\alpha=0$或$2$,所以$\tan(\alpha+\frac{\pi}{4})=\frac{\tan\alpha+1}{1-\tan\alpha}=1$或$-3$.
1. (2024江苏南通二模,8)若cosα,cos(α - $\frac{\pi}{6}$),cos(α + $\frac{\pi}{3}$)成等比数列,则sin2α= ( )
A. $\frac{\sqrt{3}}{4}$
B. $-\frac{\sqrt{3}}{6}$
C. $\frac{1}{3}$
D. $-\frac{1}{4}$
A. $\frac{\sqrt{3}}{4}$
B. $-\frac{\sqrt{3}}{6}$
C. $\frac{1}{3}$
D. $-\frac{1}{4}$
答案:
由$\cos\alpha$,$\cos(\alpha-\frac{\pi}{6})$,$\cos(\alpha+\frac{\pi}{3})$成等比数列,得$\cos^{2}(\alpha-\frac{\pi}{6})=\cos\alpha\cos(\alpha+\frac{\pi}{3})$,即$\frac{1}{2}[1+\cos(2\alpha-\frac{\pi}{3})]=\cos\alpha(\frac{1}{2}\cos\alpha-\frac{\sqrt{3}}{2}\sin\alpha)=\frac{1}{2}\cdot\frac{1+\cos2\alpha}{2}-\frac{\sqrt{3}}{4}\sin2\alpha$,$\frac{1}{2}+\frac{1}{4}\cos2\alpha+\frac{\sqrt{3}}{4}\sin2\alpha=\frac{1}{4}+\frac{1}{4}\cos2\alpha-\frac{\sqrt{3}}{4}\sin2\alpha$,所以$\sin2\alpha=-\frac{\sqrt{3}}{6}$. 故选 B.
查看更多完整答案,请扫码查看