2025年小题狂做高中数学必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



10. 如图,在矩形$ABCD$中,$AB=2,BC=\sqrt {3},E$是$CD$的中点,那么$\overrightarrow {AE}· \overrightarrow {DC}=$
2
.
答案: 10. 2 解法1 依题意得$AE = \sqrt{AD^2 + DE^2} = \sqrt{3 + 1} = 2$,由$\tan \angle AED = \frac{AD}{DE} = \sqrt{3}$,得$\angle AED = 60^{\circ}$,所以$\overrightarrow{AE}$与$\overrightarrow{DC}$的夹角$\theta = 60^{\circ}$,因此$\overrightarrow{AE} · \overrightarrow{DC} = 2 × 2 × \cos 60^{\circ} = 2$。
解法2 因为四边形ABCD是矩形,所以$AD \perp DC$,又E是CD的中点,则$DE = 1$,因此$\overrightarrow{AE} · \overrightarrow{DC} = (\overrightarrow{AD} + \overrightarrow{DE}) · \overrightarrow{DC} = \overrightarrow{AD} · \overrightarrow{DC} + \overrightarrow{DE} · \overrightarrow{DC} = 0 + 1 × 2\cos 0^{\circ} = 2$。
11. 如图,在$\triangle ABC$中,$AD⊥AB,\overrightarrow {BC}=2\overrightarrow {BD},|\overrightarrow {AD}|=2$,则$\overrightarrow {AC}· \overrightarrow {AD}=$
8
.
答案: 11. 8 由$\overrightarrow{BC} = 2\overrightarrow{BD}$,得$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$,即$\overrightarrow{AC} = 2\overrightarrow{AD} - \overrightarrow{AB}$,所以$\overrightarrow{AC} · \overrightarrow{AD} = (2\overrightarrow{AD} - \overrightarrow{AB}) · \overrightarrow{AD} = 2\overrightarrow{AD}^2 - \overrightarrow{AB} · \overrightarrow{AD}$,又$|\overrightarrow{AD}| = 2$,$\overrightarrow{AD} \perp \overrightarrow{AB}$,因此$\overrightarrow{AC} · \overrightarrow{AD} = 2 × 4 - 0 = 8$。
12. 已知$|a|=4,|b|=3,a$与$b$的夹角为$\frac {2π}{3}$,若$λa+b$与$a-b$的夹角为钝角,则实数$λ$的取值范围为
$(-\infty, -1) \cup (-1, \frac {15}{22})$
.
答案: 12. $(-\infty, -1) \cup (-1, \frac {15}{22})$ 由题意,得$\boldsymbol{a} · \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\cos\frac{2\pi}{3} = 4 × 3 × (-\frac{1}{2}) = -6$。又$\lambda\boldsymbol{a} + \boldsymbol{b}$与$\boldsymbol{a} - \lambda\boldsymbol{b}$的夹角为钝角,则$(\lambda\boldsymbol{a} + \boldsymbol{b})(\boldsymbol{a} - \lambda\boldsymbol{b}) < 0$,且$\lambda\boldsymbol{a} + \boldsymbol{b}$与$\boldsymbol{a} - \lambda\boldsymbol{b}$不共线。由$(\lambda\boldsymbol{a} + \boldsymbol{b})(\boldsymbol{a} - \lambda\boldsymbol{b}) < 0$得$\lambda\boldsymbol{a}^2 + (1 - \lambda)\boldsymbol{a} · \boldsymbol{b} - \lambda\boldsymbol{b}^2 < 0$,即$16\lambda - 6(1 - \lambda) - 9\lambda < 0$,解得$\lambda < \frac{15}{22}$。又当$\lambda = -1$时,$\lambda\boldsymbol{a} + \boldsymbol{b}$与$\boldsymbol{a} - \lambda\boldsymbol{b}$的夹角为$\pi$,所以$\lambda < \frac{15}{22}$且$\lambda \neq -1$,即实数$\lambda$的取值范围为$(-\infty, -1) \cup (-1, \frac{15}{22})$。
易错警示 若两个向量夹角为钝角,则它们的数量积一定小于0,反之不一定成立,因为还有可能两个向量反向,即夹角为$\pi$。
13. 已知$e_{1},e_{2}$是不共线的单位向量,且夹角为$θ,a=e_{1}-2e_{2},b=2e_{1}+ke_{2}$.
(1)若$a$与$b$共线,求$|b|$的取值范围;
(2)若$θ=\frac {π}{3},c$是向量$a$在向量$b$上的投影向量,且$b=2c$,求实数$k$的值.
答案: 13. 解:
(1)因为$\boldsymbol{a}$与$\boldsymbol{b}$共线,所以存在实数$\lambda$,使得$\boldsymbol{b} = \lambda\boldsymbol{a}$,即$2\boldsymbol{e_1} + k\boldsymbol{e_2} = \lambda\boldsymbol{e_1} - 2\lambda\boldsymbol{e_2}$,则$(2 - \lambda)\boldsymbol{e_1} = (-k - 2\lambda)\boldsymbol{e_2}$。又$\boldsymbol{e_1}$,$\boldsymbol{e_2}$不共线,所以$\lambda = 2$,$k = -2\lambda = -4$,则$|\boldsymbol{b}|^2 = (2\boldsymbol{e_1} - 4\boldsymbol{e_2})^2 = 4\boldsymbol{e_1}^2 - 16\boldsymbol{e_1} · \boldsymbol{e_2} + 16\boldsymbol{e_2}^2 = 20 - 16\cos\theta$,所以$|\boldsymbol{b}| = \sqrt{20 - 16\cos\theta}$。又$0 < \theta < \pi$,所以$-1 < \cos\theta < 1$,所以$2 < \sqrt{20 - 16\cos\theta} < 6$,即$2 < |\boldsymbol{b}| < 6$,所以$|\boldsymbol{b}|$的取值范围为$(2, 6)$。
(2)因为$\theta = \frac{\pi}{3}$,所以$|\boldsymbol{b}|^2 = 4 + 4k\cos\frac{\pi}{3} + k^2 = 4 + 2k + k^2$,则$\boldsymbol{a} · \boldsymbol{b} = (\boldsymbol{e_1} - 2\boldsymbol{e_2}) · (2\boldsymbol{e_1} + k\boldsymbol{e_2}) = 2 - 2k + (k - 4) × \frac{1}{2} = -\frac{3}{2}k$。
由$\boldsymbol{c}$是$\boldsymbol{a}$在$\boldsymbol{b}$上的投影向量,得$\boldsymbol{c} = \frac{\boldsymbol{a} · \boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} = \frac{-\frac{3}{2}k}{4 + 2k + k^2}\boldsymbol{b}$。又$\boldsymbol{c} = \frac{1}{2}\boldsymbol{b}$,所以$\frac{-\frac{3}{2}k}{4 + 2k + k^2} = \frac{1}{2}$,整理得$k^2 + 5k + 4 = 0$,解得$k = -1$或$k = -4$。
14. 已知$a,b$是单位向量,若对任意的$μ∈R,|a-\frac {1}{2}b|≤|a+\mu b|$恒成立,则$\langle a,b\rangle =$(
B
)

A.$\frac {π}{6}$
B.$\frac {π}{3}$
C.$\frac {π}{4}$
D.$\frac {2π}{3}$
答案: 14. B 由题知$|\boldsymbol{a}| = |\boldsymbol{b}| = 1$,对$|\boldsymbol{a} - \frac{1}{2}\boldsymbol{b}| \leq |\boldsymbol{a} + \mu\boldsymbol{b}|$两边平方,得$1 + \frac{1}{4} - \boldsymbol{a} · \boldsymbol{b} \leq 1 + \mu^2 + 2\mu\boldsymbol{a} · \boldsymbol{b}$,化简得$\mu^2 + 2\mu\boldsymbol{a} · \boldsymbol{b} + \boldsymbol{a} · \boldsymbol{b} - \frac{1}{4} \geq 0$。又因为对任意的$\mu \in \mathbf{R}$,上面关于$\mu$的一元二次不等式恒成立,则需满足$\Delta = 4(\boldsymbol{a} · \boldsymbol{b})^2 - 4(\boldsymbol{a} · \boldsymbol{b} - \frac{1}{4}) \leq 0$,即$(2\boldsymbol{a} · \boldsymbol{b} - 1)^2 \leq 0$,则$2\boldsymbol{a} · \boldsymbol{b} - 1 = 0$,即$\boldsymbol{a} · \boldsymbol{b} = \cos\langle\boldsymbol{a}, \boldsymbol{b}\rangle = \frac{1}{2}$。因为$\langle\boldsymbol{a}, \boldsymbol{b}\rangle \in [0, \pi]$,所以$\langle\boldsymbol{a}, \boldsymbol{b}\rangle = \frac{\pi}{3}$。

查看更多完整答案,请扫码查看

关闭