2026年练就优等生课后提分攻略八年级数学全一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年练就优等生课后提分攻略八年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第53页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
01 (1) 若$\frac{1}{m}+\frac{1}{n}=2$,则分式$\frac{5m+5n-2mn}{-m-n}$的值为
(2) 已知$a+b+c=0$,$abc\neq0$,求$\frac{1}{a^{2}+b^{2}-c^{2}}+\frac{1}{b^{2}+c^{2}-a^{2}}+\frac{1}{c^{2}+a^{2}-b^{2}}$的值.
-4
;(2) 已知$a+b+c=0$,$abc\neq0$,求$\frac{1}{a^{2}+b^{2}-c^{2}}+\frac{1}{b^{2}+c^{2}-a^{2}}+\frac{1}{c^{2}+a^{2}-b^{2}}$的值.
答案:
01 解:
(1)-4
(2)
∵$a + b + c = 0$,
∴$a + b = -c$,$b + c = -a$,$a + c = -b$.
∴原式$ = \frac{1}{a^{2} + b^{2} - (a + b)^{2}} + \frac{1}{b^{2} + c^{2} - (b + c)^{2}} +$
$\frac{1}{c^{2} + a^{2} - (c + a)^{2}} = - \frac{a + b + c}{2abc} = 0$.
(1)-4
(2)
∵$a + b + c = 0$,
∴$a + b = -c$,$b + c = -a$,$a + c = -b$.
∴原式$ = \frac{1}{a^{2} + b^{2} - (a + b)^{2}} + \frac{1}{b^{2} + c^{2} - (b + c)^{2}} +$
$\frac{1}{c^{2} + a^{2} - (c + a)^{2}} = - \frac{a + b + c}{2abc} = 0$.
02 (1) 已知$a+\frac{1}{a}=4$,求下列各式的值.
①$a^{2}+\frac{1}{a^{2}}$;②$\frac{a^{2}}{a^{4}+a^{2}+1}$.
(2) 已知$\frac{ab}{a+b}=\frac{1}{3}$,$\frac{bc}{b+c}=\frac{1}{4}$,$\frac{ac}{a+c}=\frac{1}{5}$,求$\frac{abc}{ab+bc+ca}$的值.
①$a^{2}+\frac{1}{a^{2}}$;②$\frac{a^{2}}{a^{4}+a^{2}+1}$.
(2) 已知$\frac{ab}{a+b}=\frac{1}{3}$,$\frac{bc}{b+c}=\frac{1}{4}$,$\frac{ac}{a+c}=\frac{1}{5}$,求$\frac{abc}{ab+bc+ca}$的值.
答案:
02 解:
(1)①
∵$a + \frac{1}{a} = 4$,
∴$(a + \frac{1}{a})^{2} = 4^{2}$,
即$a^{2} + 2 + \frac{1}{a^{2}} = 16$.
∴$a^{2} + \frac{1}{a^{2}} = 14$.
②
∵$\frac{a^{4} + a^{2} + 1}{a^{2}} = \frac{a^{4}}{a^{2}} + \frac{a^{2}}{a^{2}} + \frac{1}{a^{2}} = a^{2} + 1 + \frac{1}{a^{2}} = 14 + 1 = 15$,
∴$\frac{a^{2}}{a^{4} + a^{2} + 1} = \frac{1}{15}$.
(2)
∵$\frac{ab}{a + b} = \frac{1}{3}$,
∴$\frac{a + b}{ab} = \frac{1}{b} + \frac{1}{a} = 3$.
同理可得$\frac{1}{b} + \frac{1}{c} = 4$,$\frac{1}{a} + \frac{1}{c} = 5$,
∴$\frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{c} + \frac{1}{a} + \frac{1}{c} = 3 + 4 + 5 = 12$.
∴$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 6$.
原式$ =\frac{1}{ \frac{1}{c} + \frac{1}{a} + \frac{1}{b}}= \frac{1}{6}$.
(1)①
∵$a + \frac{1}{a} = 4$,
∴$(a + \frac{1}{a})^{2} = 4^{2}$,
即$a^{2} + 2 + \frac{1}{a^{2}} = 16$.
∴$a^{2} + \frac{1}{a^{2}} = 14$.
②
∵$\frac{a^{4} + a^{2} + 1}{a^{2}} = \frac{a^{4}}{a^{2}} + \frac{a^{2}}{a^{2}} + \frac{1}{a^{2}} = a^{2} + 1 + \frac{1}{a^{2}} = 14 + 1 = 15$,
∴$\frac{a^{2}}{a^{4} + a^{2} + 1} = \frac{1}{15}$.
(2)
∵$\frac{ab}{a + b} = \frac{1}{3}$,
∴$\frac{a + b}{ab} = \frac{1}{b} + \frac{1}{a} = 3$.
同理可得$\frac{1}{b} + \frac{1}{c} = 4$,$\frac{1}{a} + \frac{1}{c} = 5$,
∴$\frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{c} + \frac{1}{a} + \frac{1}{c} = 3 + 4 + 5 = 12$.
∴$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 6$.
原式$ =\frac{1}{ \frac{1}{c} + \frac{1}{a} + \frac{1}{b}}= \frac{1}{6}$.
03 (1) 已知$3x=2y=5z\neq0$,求$\frac{x+2y+3z}{x-y+z}$的值;
(2) 已知$\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$,求$\frac{abc}{(a+b)(b+c)(c+a)}$的值.
(2) 已知$\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$,求$\frac{abc}{(a+b)(b+c)(c+a)}$的值.
答案:
03 解:
(1)设$3x = 2y = 5z = 30k(k \neq 0)$,则$x = 10k$,$y = 15k$,$z = 6k$.
原式$ = \frac{10k + 30k + 18k}{10k - 15k + 6k} = \frac{58k}{k} = 58$.
(2)设$\frac{b + c}{a} = \frac{c + a}{b} = \frac{a + b}{c} = k$,
∴$b + c = ak$,$c + a = bk$,$a + b = ck$.
∴$b + c + c + a + a + b = ak + bk + ck$,$2(a + b + c) = k(a + b + c)$,即$(a + b + c)(2 - k) = 0$,
∴$a + b + c = 0$或$k = 2$.
由$a + b + c = 0$时,$\frac{-a}{a} = \frac{-b}{b} = \frac{-c}{c} = k$,得$k = -1$.
∴$k = 2$或$k = -1$.
∴原式$ = \frac{abc}{abck^{3}} = \frac{1}{k^{3}}$.
∴$\frac{abc}{(a + b)(b + c)(c + a)}$的值为$\frac{1}{8}$或$-1$.
(1)设$3x = 2y = 5z = 30k(k \neq 0)$,则$x = 10k$,$y = 15k$,$z = 6k$.
原式$ = \frac{10k + 30k + 18k}{10k - 15k + 6k} = \frac{58k}{k} = 58$.
(2)设$\frac{b + c}{a} = \frac{c + a}{b} = \frac{a + b}{c} = k$,
∴$b + c = ak$,$c + a = bk$,$a + b = ck$.
∴$b + c + c + a + a + b = ak + bk + ck$,$2(a + b + c) = k(a + b + c)$,即$(a + b + c)(2 - k) = 0$,
∴$a + b + c = 0$或$k = 2$.
由$a + b + c = 0$时,$\frac{-a}{a} = \frac{-b}{b} = \frac{-c}{c} = k$,得$k = -1$.
∴$k = 2$或$k = -1$.
∴原式$ = \frac{abc}{abck^{3}} = \frac{1}{k^{3}}$.
∴$\frac{abc}{(a + b)(b + c)(c + a)}$的值为$\frac{1}{8}$或$-1$.
查看更多完整答案,请扫码查看