2026年练就优等生课后提分攻略八年级数学全一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年练就优等生课后提分攻略八年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第52页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
01 化简:$\frac{1}{x - 2} - \frac{2}{x - 1} + \frac{2}{x + 1} - \frac{1}{x + 2}$。
答案:
01 解:原式$= \frac{1}{x - 2} - \frac{1}{x + 2} + \frac{2}{x + 1} - \frac{2}{x - 1}$ $= \frac{4}{(x + 2)(x - 2)} + \frac{-4}{(x + 1)(x - 1)}$ $= \frac{12}{(x + 2)(x - 2)(x + 1)(x - 1)}$
02 化简:
(1)$x + 1 - \frac{x^2}{x - 1} + \frac{1}{x + 1}$; (2)$\frac{x^3}{x - 1} - x^2 - x - 1$。
(1)$x + 1 - \frac{x^2}{x - 1} + \frac{1}{x + 1}$; (2)$\frac{x^3}{x - 1} - x^2 - x - 1$。
答案:
02 解:
(1)原式$= \frac{x + 1}{1} - \frac{x^{2}}{x - 1} + \frac{1}{x + 1}$ $= \frac{x^{3} - x + x^{2} - 1 - x^{2}(x + 1) + x - 1}{x^{2} - 1}$ $= \frac{-2}{x^{2} - 1}$
(2)原式$= \frac{x^{3}}{x - 1} - \frac{x^{2} + x + 1}{1}$ $= \frac{x^{3} - (x - 1)(x^{2} + x + 1)}{x - 1}$ $= \frac{x^{3} - (x^{3} - 1)}{x - 1}$ $= \frac{1}{x - 1}$
(1)原式$= \frac{x + 1}{1} - \frac{x^{2}}{x - 1} + \frac{1}{x + 1}$ $= \frac{x^{3} - x + x^{2} - 1 - x^{2}(x + 1) + x - 1}{x^{2} - 1}$ $= \frac{-2}{x^{2} - 1}$
(2)原式$= \frac{x^{3}}{x - 1} - \frac{x^{2} + x + 1}{1}$ $= \frac{x^{3} - (x - 1)(x^{2} + x + 1)}{x - 1}$ $= \frac{x^{3} - (x^{3} - 1)}{x - 1}$ $= \frac{1}{x - 1}$
03 化简:
(1)$\frac{1}{1 - x} + \frac{1}{1 + x} + \frac{2}{1 + x^2} + \frac{4}{1 + x^4}$; (2)$\frac{1}{a - b} + \frac{1}{a + b} + \frac{2a}{a^2 + b^2} + \frac{4a^3}{a^4 + b^4}$。
(1)$\frac{1}{1 - x} + \frac{1}{1 + x} + \frac{2}{1 + x^2} + \frac{4}{1 + x^4}$; (2)$\frac{1}{a - b} + \frac{1}{a + b} + \frac{2a}{a^2 + b^2} + \frac{4a^3}{a^4 + b^4}$。
答案:
03 解:
(1)原式$= \frac{2}{1 - x^{2}} + \frac{2}{1 + x^{2}} + \frac{4}{1 + x^{4}} = \frac{4}{1 - x^{4}}+ \frac{4}{1 + x^{4}}= =\frac{8}{(1-x^4)(1+x^4)}=\frac{8}{1 - x^{8}}$
(2)原式$= \frac{2a}{a^{2} - b^{2}} + \frac{2a}{a^{2} + b^{2}} + \frac{4a^{3}}{a^{4} + b^{4}} = \frac{4a^{3}}{a^{4} - b^{4}} + \frac{4a^{3}}{a^{4} + b^{4}} = \frac{8a^{7}}{a^{8} - b^{8}}$
(1)原式$= \frac{2}{1 - x^{2}} + \frac{2}{1 + x^{2}} + \frac{4}{1 + x^{4}} = \frac{4}{1 - x^{4}}+ \frac{4}{1 + x^{4}}= =\frac{8}{(1-x^4)(1+x^4)}=\frac{8}{1 - x^{8}}$
(2)原式$= \frac{2a}{a^{2} - b^{2}} + \frac{2a}{a^{2} + b^{2}} + \frac{4a^{3}}{a^{4} + b^{4}} = \frac{4a^{3}}{a^{4} - b^{4}} + \frac{4a^{3}}{a^{4} + b^{4}} = \frac{8a^{7}}{a^{8} - b^{8}}$
04 化简:
(1)$\frac{a - 1}{a^2 - 1} + \frac{a}{a + 1} - \frac{a^2 - b^2}{a^2 + 2ab + b^2}$; (2)$(\frac{a^2}{a + 1} - a + 1) + \frac{a^2 - 1}{a^2 + 2a + 1}$。
(1)$\frac{a - 1}{a^2 - 1} + \frac{a}{a + 1} - \frac{a^2 - b^2}{a^2 + 2ab + b^2}$; (2)$(\frac{a^2}{a + 1} - a + 1) + \frac{a^2 - 1}{a^2 + 2a + 1}$。
答案:
04 解:
(1)原式$= \frac{a - 1}{(a + 1)(a - 1)} + \frac{a}{a + 1} - \frac{(a + b)(a - b)}{(a + b)^{2}} = \frac{1}{a + 1} + \frac{a}{a + 1} - \frac{a - b}{a + b} = 1 - \frac{a - b}{a + b} = \frac{a + b - a + b}{a + b} = \frac{2b}{a + b}$
(2)原式$= \frac{a^{2}}{a + 1} - \frac{(a + 1)(a - 1)}{a + 1} + \frac{(a + 1)(a - 1)}{(a + 1)^{2}} = \frac{a^{2} - a^{2} + 1}{a + 1} + \frac{a - 1}{a + 1} = \frac{1}{a + 1} + \frac{a - 1}{a + 1} = \frac{a}{a + 1}$
(1)原式$= \frac{a - 1}{(a + 1)(a - 1)} + \frac{a}{a + 1} - \frac{(a + b)(a - b)}{(a + b)^{2}} = \frac{1}{a + 1} + \frac{a}{a + 1} - \frac{a - b}{a + b} = 1 - \frac{a - b}{a + b} = \frac{a + b - a + b}{a + b} = \frac{2b}{a + b}$
(2)原式$= \frac{a^{2}}{a + 1} - \frac{(a + 1)(a - 1)}{a + 1} + \frac{(a + 1)(a - 1)}{(a + 1)^{2}} = \frac{a^{2} - a^{2} + 1}{a + 1} + \frac{a - 1}{a + 1} = \frac{1}{a + 1} + \frac{a - 1}{a + 1} = \frac{a}{a + 1}$
查看更多完整答案,请扫码查看