2025年大联考单元期末测试卷九年级数学全一册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年大联考单元期末测试卷九年级数学全一册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第95页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
15. 若 $\frac{a + 2}{3} = \frac{b}{4} = \frac{c + 5}{6}$,且 $2a - b + 3c = 21$,试求 $a:b:c$.
答案:
15.解:设$\frac{a + 2}{3} = \frac{b}{4} = \frac{c + 5}{6} = k$,
则$a = 3k - 2$,$b = 4k$,$c = 6k - 5$,(3分)
$\therefore 2(3k - 2) - 4k + 3(6k - 5) = 21$,
解得$k = 2$,(6分)
$\therefore a = 6 - 2 = 4$,$b = 8$,$c = 7$,
$\therefore a:b:c = 4:8:7$.(8分)
则$a = 3k - 2$,$b = 4k$,$c = 6k - 5$,(3分)
$\therefore 2(3k - 2) - 4k + 3(6k - 5) = 21$,
解得$k = 2$,(6分)
$\therefore a = 6 - 2 = 4$,$b = 8$,$c = 7$,
$\therefore a:b:c = 4:8:7$.(8分)
16. 如图,已知△ABC 的边 BC 在直线 MN 上,将△ABC 绕点 A 按逆时针方向旋转,使点 C 落在直线 MN 上的点 C'处,得到△AB'C'.
(1) 请用尺规作图作出△AB'C',并标明字母(保留作图痕迹,不写作法).
(2) 若∠ACB = 118°,则∠BC'B' =

(1) 请用尺规作图作出△AB'C',并标明字母(保留作图痕迹,不写作法).
(2) 若∠ACB = 118°,则∠BC'B' =
56°
.
答案:
16.解:
(1)如图所示,
△AB'C'即为所求.
(3分)
(2)$\because \angle ACB = 118^{\circ}$,
$\therefore \angle ACC' = 62^{\circ}$,
(4分)
由旋转可得$\triangle ABC \cong \triangle AB'C'$,
$\therefore \angle AC'B' = \angle ACB = 118^{\circ}$,$AC = AC'$,(6分)
$\therefore \angle AC'C = \angle ACC' = 62^{\circ}$,
$\therefore \angle BC'B′ = \angle AC'B' - \angle AC'C = 118^{\circ} - 62^{\circ} = 56^{\circ}$.(8分)
16.解:
(1)如图所示,
△AB'C'即为所求.
(3分)
(2)$\because \angle ACB = 118^{\circ}$,
$\therefore \angle ACC' = 62^{\circ}$,
(4分)
由旋转可得$\triangle ABC \cong \triangle AB'C'$,
$\therefore \angle AC'B' = \angle ACB = 118^{\circ}$,$AC = AC'$,(6分)
$\therefore \angle AC'C = \angle ACC' = 62^{\circ}$,
$\therefore \angle BC'B′ = \angle AC'B' - \angle AC'C = 118^{\circ} - 62^{\circ} = 56^{\circ}$.(8分)
17. 如图,四边形 ABCD 是⊙O 的内接矩形,点 E,F 分别在射线 AB,AD 上,OE = OF,且点 C,E,F 在一条直线上,EF 与⊙O 相切于点 C.
(1) 求证:矩形 ABCD 是正方形.
(2) 若 OF = 10,求正方形 ABCD 的面积.

(1) 求证:矩形 ABCD 是正方形.
(2) 若 OF = 10,求正方形 ABCD 的面积.
答案:
17.解:
(1)证明:如图,连接AC.
$\because$四边形ABCD是$\odot O$的内接矩形,
$\therefore AC$是$\odot O$的直径.
$\because EF$与$\odot O$相切于点$C$,$\therefore AC \perp EF$.
$\because OE = OF$,$\therefore CF = CE$.
$\because$四边形ABCD是矩形,$\therefore \angle FAE = 90^{\circ}$,
$\therefore AC = \frac{1}{2}EF = CF = CE$,$\therefore \angle CAE = 45^{\circ}$.
$\because \angle ABC = 90^{\circ}$,$\therefore \angle ACB = 45^{\circ}$,$\therefore AB = CB$,
$\therefore$矩形ABCD是正方形.(4分)
(2)$\because OC = \frac{1}{2}AC$,$AC = CF$,$\therefore CF = 2OC$.
$\because OF = 10$,$OF^{2} = OC^{2} + CF^{2}$,$\therefore 10^{2} = OC^{2} + 4OC^{2}$,$\therefore OC = 2\sqrt{5}$,
$\therefore AB = \sqrt{2}OC = 2\sqrt{10}$,$\therefore AB^{2} = 40$,
$\therefore$正方形ABCD的面积是40.(8分)
17.解:
(1)证明:如图,连接AC.
$\because$四边形ABCD是$\odot O$的内接矩形,
$\therefore AC$是$\odot O$的直径.
$\because EF$与$\odot O$相切于点$C$,$\therefore AC \perp EF$.
$\because OE = OF$,$\therefore CF = CE$.
$\because$四边形ABCD是矩形,$\therefore \angle FAE = 90^{\circ}$,
$\therefore AC = \frac{1}{2}EF = CF = CE$,$\therefore \angle CAE = 45^{\circ}$.
$\because \angle ABC = 90^{\circ}$,$\therefore \angle ACB = 45^{\circ}$,$\therefore AB = CB$,
$\therefore$矩形ABCD是正方形.(4分)
(2)$\because OC = \frac{1}{2}AC$,$AC = CF$,$\therefore CF = 2OC$.
$\because OF = 10$,$OF^{2} = OC^{2} + CF^{2}$,$\therefore 10^{2} = OC^{2} + 4OC^{2}$,$\therefore OC = 2\sqrt{5}$,
$\therefore AB = \sqrt{2}OC = 2\sqrt{10}$,$\therefore AB^{2} = 40$,
$\therefore$正方形ABCD的面积是40.(8分)
查看更多完整答案,请扫码查看