2025年大联考单元期末测试卷九年级数学全一册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年大联考单元期末测试卷九年级数学全一册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第100页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
23. 如图 1,在△ABC 中,∠ACB = 90°,AC = BC,点 E 为△ABC 的中线 BD 上的一点,将线段 AE 以点 E 为旋转中心逆时针旋转 90°得到线段 EF,EF 恰好经过点 C.
(1) 若∠CAF = α,求∠CBE 的度数(用含 α 的代数式表示).
(2) 如图 2,过点 C 作 CH // AE 交 AF 于点 H,连接 BH 交 EF 于点 G.
① 求证:AF = BH;
② 若 CF = 2,求 EG 的长.

(1) 若∠CAF = α,求∠CBE 的度数(用含 α 的代数式表示).
(2) 如图 2,过点 C 作 CH // AE 交 AF 于点 H,连接 BH 交 EF 于点 G.
① 求证:AF = BH;
② 若 CF = 2,求 EG 的长.
答案:
23.解:
(1)$\because$点$D$为$AC$的中点,$\angle AEC = 90^{\circ}$,
$\therefore AD = DE = DC$,$\therefore \angle DAE = \angle AED$.
$\because AE = EF$,$\therefore \angle EAF = \angle F = 45^{\circ}$,
$\therefore \angle EAD = 45^{\circ} - \alpha$,
$\therefore \angle DEA = \angle EAD = 45^{\circ} - \alpha$.
$\because \angle EDC = 90^{\circ} - 2\alpha$,$\angle BCA = 90^{\circ}$,
$\therefore \angle CBE = 2\alpha$.(4分)
(2)①证明:$\because CH // AE$,
$\therefore \angle FCH = \angle FEA = \angle BCA = 90^{\circ}$,
$\therefore \angle CHF = \angle EAF = \angle F = 45^{\circ}$,
$\therefore CH = CF$.(6分)
$\because \angle BCH = \angle ACH + \angle BCA$,
$\angle ACF = \angle ACH + \angle FCH$,
$\therefore \angle BCH = \angle ACF$.(7分)
在$\triangle ACF$和$\triangle BCH$中,$\because \begin{cases} BC = AC, \\\angle BCH = \angle ACF, \\CH = CF, \end{cases}$
$\therefore \triangle ACF \cong \triangle BCH(SAS)$,$\therefore AF = BH$.(9分)
②由$\triangle ACF \cong \triangle BCH$,得$\angle CAF = \angle CBH$.
又$\because \angle CBE = 2\angle CAF$,$\therefore \angle CBE = 2\angle CBH$,
$\therefore \angle CBH = \angle EBG$,$\therefore \angle CAF = \angle EBG$.
$\because DE = DC$,
$\therefore \angle DEC = \angle DCE$,即$\angle BEG = \angle ACF$,
$\therefore \triangle BEG \backsim \triangle ACF$.(12分)
由$BC = 2DC = 2DE$,可设$BC = 2x$,
则$AC = BC = 2x$,$CD = DE = x$,
$BD = \sqrt{BC^{2} + DC^{2}} = \sqrt{5}x$,$BE = (\sqrt{5} - 1)x$,
$\therefore \frac{BE}{BC} = \frac{\sqrt{5} - 1}{2}$,
$\therefore \frac{EG}{CF} = \frac{BE}{AC} = \frac{BE}{BC} = \frac{\sqrt{5} - 1}{2}$.
$\because CF = 2$,$\therefore EG = \sqrt{5} - 1$.(14分)
(1)$\because$点$D$为$AC$的中点,$\angle AEC = 90^{\circ}$,
$\therefore AD = DE = DC$,$\therefore \angle DAE = \angle AED$.
$\because AE = EF$,$\therefore \angle EAF = \angle F = 45^{\circ}$,
$\therefore \angle EAD = 45^{\circ} - \alpha$,
$\therefore \angle DEA = \angle EAD = 45^{\circ} - \alpha$.
$\because \angle EDC = 90^{\circ} - 2\alpha$,$\angle BCA = 90^{\circ}$,
$\therefore \angle CBE = 2\alpha$.(4分)
(2)①证明:$\because CH // AE$,
$\therefore \angle FCH = \angle FEA = \angle BCA = 90^{\circ}$,
$\therefore \angle CHF = \angle EAF = \angle F = 45^{\circ}$,
$\therefore CH = CF$.(6分)
$\because \angle BCH = \angle ACH + \angle BCA$,
$\angle ACF = \angle ACH + \angle FCH$,
$\therefore \angle BCH = \angle ACF$.(7分)
在$\triangle ACF$和$\triangle BCH$中,$\because \begin{cases} BC = AC, \\\angle BCH = \angle ACF, \\CH = CF, \end{cases}$
$\therefore \triangle ACF \cong \triangle BCH(SAS)$,$\therefore AF = BH$.(9分)
②由$\triangle ACF \cong \triangle BCH$,得$\angle CAF = \angle CBH$.
又$\because \angle CBE = 2\angle CAF$,$\therefore \angle CBE = 2\angle CBH$,
$\therefore \angle CBH = \angle EBG$,$\therefore \angle CAF = \angle EBG$.
$\because DE = DC$,
$\therefore \angle DEC = \angle DCE$,即$\angle BEG = \angle ACF$,
$\therefore \triangle BEG \backsim \triangle ACF$.(12分)
由$BC = 2DC = 2DE$,可设$BC = 2x$,
则$AC = BC = 2x$,$CD = DE = x$,
$BD = \sqrt{BC^{2} + DC^{2}} = \sqrt{5}x$,$BE = (\sqrt{5} - 1)x$,
$\therefore \frac{BE}{BC} = \frac{\sqrt{5} - 1}{2}$,
$\therefore \frac{EG}{CF} = \frac{BE}{AC} = \frac{BE}{BC} = \frac{\sqrt{5} - 1}{2}$.
$\because CF = 2$,$\therefore EG = \sqrt{5} - 1$.(14分)
查看更多完整答案,请扫码查看