2025年大联考单元期末测试卷九年级数学全一册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年大联考单元期末测试卷九年级数学全一册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第40页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
23. 【原题呈现】如图 1,在等边三角形$ABC$中,点$D$,$E$是$AB$,$AC$上的点,且$CD = AE$,求$\angle CFD$度数.
解答过程:在等边三角形$ABC$中,$\angle A = \angle DCB = 60^{\circ}$,$BC = AC$.
又$\because CD = AE$,$\therefore\triangle CDB\cong\triangle AEC(SAS)$,
$\therefore\angle CFD = \angle FCB + \angle DBC = \angle FCB + \angle ACE = \angle ACB = 60^{\circ}$.
【操作探究】如图 2,将$CB$绕点$C$逆时针旋转 $60^{\circ}$到$CQ$,连接$BQ$,连接$FQ$交$BC$于点$O$,求证:$\angle CFQ = 60^{\circ}$.
【深入思考】如图 3,延长$QF$交$AC$于点$P$.若点$P$恰好是$AC$的中点.
① 请直接写出$\frac{OC}{OB}=$
② 若$AC = 6$,求$FO$的长.



解答过程:在等边三角形$ABC$中,$\angle A = \angle DCB = 60^{\circ}$,$BC = AC$.
又$\because CD = AE$,$\therefore\triangle CDB\cong\triangle AEC(SAS)$,
$\therefore\angle CFD = \angle FCB + \angle DBC = \angle FCB + \angle ACE = \angle ACB = 60^{\circ}$.
【操作探究】如图 2,将$CB$绕点$C$逆时针旋转 $60^{\circ}$到$CQ$,连接$BQ$,连接$FQ$交$BC$于点$O$,求证:$\angle CFQ = 60^{\circ}$.
【深入思考】如图 3,延长$QF$交$AC$于点$P$.若点$P$恰好是$AC$的中点.
① 请直接写出$\frac{OC}{OB}=$
$\frac{1}{2}$
;② 若$AC = 6$,求$FO$的长.
答案:
23.解:【操作探究】证明:如图2,延长$FD$至点$G$,使得$FG = FC$,连接$CG$。
$\because FG = FC$,且$\angle GFC = 60^{\circ}$,
$\therefore \triangle GFC$是等边三角形,
$\therefore CG = FG = FC$,$\angle GCF = 60^{\circ}$。(2分)
又$\because \angle BCQ = 60^{\circ}$,
$\therefore \angle GCF + \angle FCB = \angle BCQ + \angle FCB$,
$\therefore \angle GCB = \angle QCF$。
在$\triangle GCB$与$\triangle FCQ$中,$\because \begin{cases}CG = CF\\\angle GCB = \angle FCQ\\CB = CQ\end{cases}$
$\therefore \triangle GCB \cong \triangle FCQ(SAS)$,
$\therefore \angle CFQ = \angle G = 60^{\circ}$。(5分)
【深入思考】①$\frac{1}{2}$。(8分)
由【操作探究】知,$\triangle GCB \cong \triangle FCQ$,
$\therefore \angle CGB = \angle CFO = 60^{\circ}$。
$\because \angle QCB = \angle ABC = 60^{\circ}$,
$\therefore CQ // AB$。$\because CQ = CB = BA$,
$\therefore$四边形$ABQC$是平行四边形。
又$\because AC = AB$,$\therefore$四边形$ABQC$是菱形,
$\therefore CP // BQ$,
$\therefore \angle OCP = \angle OBQ$,$\angle OPC = \angle OQB$,
$\therefore \triangle OCP \sim \triangle OBQ$,$\therefore \frac{CO}{OB}=\frac{CP}{BQ}=\frac{CP}{AC}=\frac{1}{2}$。
②如图3,连接$BP$。
$\because \triangle ABC$是等边三角形,
$\therefore AB = AC = BC = 6$,$\angle A = \angle ABC = \angle ACB = 60^{\circ}$。由①知$\frac{CO}{OB}=\frac{1}{2}$,$\therefore CO = 2$,$OB = 4$。
由【操作探究】知,$\triangle GCB \cong \triangle FCQ$,
$\therefore \angle CQO = \angle CBD$。
又$\because CQ = CB$,$\angle OCQ = \angle DCB = 60^{\circ}$,
$\therefore \triangle COQ \cong \triangle CDB(ASA)$,
$\therefore CO = CD = 2 = AE$,$\therefore BE = AB - AE = 4$。(10分)
$\because$点$P$是$AC$的中点,$\therefore BP \perp AC$,$\angle ABP = \frac{1}{2}\angle ABC = 30^{\circ}$,$DP = PC - CD = \frac{1}{2}AC - CD = 3 - 2 = 1$。
$\therefore$在$Rt\triangle PCB$中,$BP = \sqrt{BC^{2} - PC^{2}} = \sqrt{6^{2} - 3^{2}} = \sqrt{27} = 3\sqrt{3}$。
$\therefore$在$Rt\triangle BPD$中,$BD = \sqrt{(3\sqrt{3})^{2} + 1^{2}} = 2\sqrt{7} = CE$。(12分)
由①知,$\angle CFO = 60^{\circ}$,
$\therefore \angle CFO = \angle CBE = 60^{\circ}$,$\angle FCO = \angle BCE$,
$\therefore \triangle FCO \sim \triangle BCE$,$\therefore \frac{CO}{CE}=\frac{FO}{EB}$,$\therefore \frac{2}{2\sqrt{7}}=\frac{FO}{4}$,
$\therefore FO = \frac{4\sqrt{7}}{7}$。(14分)
23.解:【操作探究】证明:如图2,延长$FD$至点$G$,使得$FG = FC$,连接$CG$。
$\because FG = FC$,且$\angle GFC = 60^{\circ}$,
$\therefore \triangle GFC$是等边三角形,
$\therefore CG = FG = FC$,$\angle GCF = 60^{\circ}$。(2分)
又$\because \angle BCQ = 60^{\circ}$,
$\therefore \angle GCF + \angle FCB = \angle BCQ + \angle FCB$,
$\therefore \angle GCB = \angle QCF$。
在$\triangle GCB$与$\triangle FCQ$中,$\because \begin{cases}CG = CF\\\angle GCB = \angle FCQ\\CB = CQ\end{cases}$
$\therefore \triangle GCB \cong \triangle FCQ(SAS)$,
$\therefore \angle CFQ = \angle G = 60^{\circ}$。(5分)
【深入思考】①$\frac{1}{2}$。(8分)
由【操作探究】知,$\triangle GCB \cong \triangle FCQ$,
$\therefore \angle CGB = \angle CFO = 60^{\circ}$。
$\because \angle QCB = \angle ABC = 60^{\circ}$,
$\therefore CQ // AB$。$\because CQ = CB = BA$,
$\therefore$四边形$ABQC$是平行四边形。
又$\because AC = AB$,$\therefore$四边形$ABQC$是菱形,
$\therefore CP // BQ$,
$\therefore \angle OCP = \angle OBQ$,$\angle OPC = \angle OQB$,
$\therefore \triangle OCP \sim \triangle OBQ$,$\therefore \frac{CO}{OB}=\frac{CP}{BQ}=\frac{CP}{AC}=\frac{1}{2}$。
②如图3,连接$BP$。
$\because \triangle ABC$是等边三角形,
$\therefore AB = AC = BC = 6$,$\angle A = \angle ABC = \angle ACB = 60^{\circ}$。由①知$\frac{CO}{OB}=\frac{1}{2}$,$\therefore CO = 2$,$OB = 4$。
由【操作探究】知,$\triangle GCB \cong \triangle FCQ$,
$\therefore \angle CQO = \angle CBD$。
又$\because CQ = CB$,$\angle OCQ = \angle DCB = 60^{\circ}$,
$\therefore \triangle COQ \cong \triangle CDB(ASA)$,
$\therefore CO = CD = 2 = AE$,$\therefore BE = AB - AE = 4$。(10分)
$\because$点$P$是$AC$的中点,$\therefore BP \perp AC$,$\angle ABP = \frac{1}{2}\angle ABC = 30^{\circ}$,$DP = PC - CD = \frac{1}{2}AC - CD = 3 - 2 = 1$。
$\therefore$在$Rt\triangle PCB$中,$BP = \sqrt{BC^{2} - PC^{2}} = \sqrt{6^{2} - 3^{2}} = \sqrt{27} = 3\sqrt{3}$。
$\therefore$在$Rt\triangle BPD$中,$BD = \sqrt{(3\sqrt{3})^{2} + 1^{2}} = 2\sqrt{7} = CE$。(12分)
由①知,$\angle CFO = 60^{\circ}$,
$\therefore \angle CFO = \angle CBE = 60^{\circ}$,$\angle FCO = \angle BCE$,
$\therefore \triangle FCO \sim \triangle BCE$,$\therefore \frac{CO}{CE}=\frac{FO}{EB}$,$\therefore \frac{2}{2\sqrt{7}}=\frac{FO}{4}$,
$\therefore FO = \frac{4\sqrt{7}}{7}$。(14分)
查看更多完整答案,请扫码查看