第103页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
20. 在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,点$E是斜边AB$的中点,$AB = 10$,$BC = 8$,点$P在CE$的延长线上,过点$P作PQ \perp CB$,交$CB的延长线于点Q$,设$EP = x$.
(1) 如图(1),求证:$\triangle ABC \backsim \triangle PCQ$;
(2) 如图(2),连接$PB$,当$PB平分\angle CPQ$时,试求$x$的值;
(3) 如图(3),过点$B作BF \perp AB交PQ于点F$,若$\angle BEF = \angle A$,试求$x$的值.

(1) 如图(1),求证:$\triangle ABC \backsim \triangle PCQ$;
(2) 如图(2),连接$PB$,当$PB平分\angle CPQ$时,试求$x$的值;
(3) 如图(3),过点$B作BF \perp AB交PQ于点F$,若$\angle BEF = \angle A$,试求$x$的值.
答案:
(1)
∵∠ACB = 90°,E是AB中点,
∴CE = BE.
∴∠ABC = ∠PCQ.
∵PQ ⊥ CB,
∴∠PQC = 90° = ∠ACB.
∴△ABC ∽ △PCQ
(2)作BH ⊥ PE于点H,
∵PB平分∠CPQ,BH ⊥ PE,BQ ⊥ PQ,
∴BH = BQ.
∵△ABC ∽ △PCQ,
∴$\frac{PC}{CQ}$ = $\frac{AB}{BC}$ = $\frac{10}{8}$ = $\frac{5}{4}$.
∴CQ = $\frac{4}{5}$PC = $\frac{4}{5}$(CE + EP) = $\frac{4}{5}$(5 + x).
∴BQ = CQ - BC = $\frac{4}{5}$x - 4.
∴BH = BQ = $\frac{4}{5}$x - 4.又易证△ABC ∽ △BCH,则可得BH = $\frac{24}{5}$.
∴$\frac{4}{5}$x - 4 = $\frac{24}{5}$.
∴x = 11
(3)
∵BF ⊥ AB,
∴∠EBF = 90° = ∠ACB.又
∵∠BEF = ∠A,
∴△EBF ∽ △ACB.
∴$\frac{BF}{BC}$ = $\frac{BE}{AC}$.
∵∠ABC + ∠FBQ = 90° = ∠ABC + ∠A,
∴∠FBQ = ∠A.又
∵∠ACB = 90° = ∠BQF,
∴△ACB ∽ △BQF.
∴$\frac{AB}{BF}$ = $\frac{AC}{BQ}$.
∴$\frac{AB}{BC}$ = $\frac{BE}{BQ}$.
∵AB = 10,BC = 8,BE = 5,
∴BQ = 4.由
(2)知$\frac{PC}{CQ}$ = $\frac{AB}{BC}$,
∵CQ = BC + BQ = 12,
∴PC = 15.
∴EP = PC - CE = 10,即x = 10
(1)
∵∠ACB = 90°,E是AB中点,
∴CE = BE.
∴∠ABC = ∠PCQ.
∵PQ ⊥ CB,
∴∠PQC = 90° = ∠ACB.
∴△ABC ∽ △PCQ
(2)作BH ⊥ PE于点H,
∵PB平分∠CPQ,BH ⊥ PE,BQ ⊥ PQ,
∴BH = BQ.
∵△ABC ∽ △PCQ,
∴$\frac{PC}{CQ}$ = $\frac{AB}{BC}$ = $\frac{10}{8}$ = $\frac{5}{4}$.
∴CQ = $\frac{4}{5}$PC = $\frac{4}{5}$(CE + EP) = $\frac{4}{5}$(5 + x).
∴BQ = CQ - BC = $\frac{4}{5}$x - 4.
∴BH = BQ = $\frac{4}{5}$x - 4.又易证△ABC ∽ △BCH,则可得BH = $\frac{24}{5}$.
∴$\frac{4}{5}$x - 4 = $\frac{24}{5}$.
∴x = 11
(3)
∵BF ⊥ AB,
∴∠EBF = 90° = ∠ACB.又
∵∠BEF = ∠A,
∴△EBF ∽ △ACB.
∴$\frac{BF}{BC}$ = $\frac{BE}{AC}$.
∵∠ABC + ∠FBQ = 90° = ∠ABC + ∠A,
∴∠FBQ = ∠A.又
∵∠ACB = 90° = ∠BQF,
∴△ACB ∽ △BQF.
∴$\frac{AB}{BF}$ = $\frac{AC}{BQ}$.
∴$\frac{AB}{BC}$ = $\frac{BE}{BQ}$.
∵AB = 10,BC = 8,BE = 5,
∴BQ = 4.由
(2)知$\frac{PC}{CQ}$ = $\frac{AB}{BC}$,
∵CQ = BC + BQ = 12,
∴PC = 15.
∴EP = PC - CE = 10,即x = 10
21. 如图(1),设$D为锐角三角形ABC$内一点,$\angle ADB = \angle ACB + 90^{\circ}$.
(1) 求证:$\angle CAD + \angle CBD = 90^{\circ}$;
(2) 如图(2),过点$B作BE \perp BD$,$BE = BD$,连接$EC$,若$AC \cdot BD = AD \cdot BC$,
① 求证:$\triangle ACD \backsim \triangle BCE$;
② 求$\frac{AB \cdot CD}{AC \cdot BD}$的值.

(1) 求证:$\angle CAD + \angle CBD = 90^{\circ}$;
(2) 如图(2),过点$B作BE \perp BD$,$BE = BD$,连接$EC$,若$AC \cdot BD = AD \cdot BC$,
① 求证:$\triangle ACD \backsim \triangle BCE$;
② 求$\frac{AB \cdot CD}{AC \cdot BD}$的值.
答案:
(1)延长CD交AB于点H,
∵∠ADH = ∠CAD + ∠ACD,∠BDH = ∠BCD + ∠CBD,
∴∠CAD + ∠CBD = ∠ADH + ∠BDH - ∠ACD - ∠BCD = ∠ADB - ∠ACB = 90°
(2)①
∵AC·BD = AD·BC,BD = BE,
∴$\frac{AC}{BC}$ = $\frac{AD}{BE}$.
∵∠CAD + ∠CBD = 90°,∠CBD + ∠CBE = 90°,
∴∠CBE = ∠CAD.
∴△ACD ∽ △BCE ② 由①知$\frac{AC}{BC}$ = $\frac{CD}{EC}$,∠ACD = ∠BCE,
∴∠ACB = ∠DCE.连接DE,由$\frac{AC}{CD}$ = $\frac{BC}{EC}$可得△ACB ∽ △DCE.
∴$\frac{AC}{CD}$ = $\frac{AB}{DE}$.
∵BE ⊥ BD,BE = BD,
∴DE = $\sqrt{2}$BD.
∴$\frac{AB·CD}{AC·BD}$ = $\frac{AB}{BD}$·$\frac{CD}{AC}$ = $\frac{AB}{BD}$·$\frac{DE}{AB}$ = $\frac{DE}{BD}$ = $\sqrt{2}$
(1)延长CD交AB于点H,
∵∠ADH = ∠CAD + ∠ACD,∠BDH = ∠BCD + ∠CBD,
∴∠CAD + ∠CBD = ∠ADH + ∠BDH - ∠ACD - ∠BCD = ∠ADB - ∠ACB = 90°
(2)①
∵AC·BD = AD·BC,BD = BE,
∴$\frac{AC}{BC}$ = $\frac{AD}{BE}$.
∵∠CAD + ∠CBD = 90°,∠CBD + ∠CBE = 90°,
∴∠CBE = ∠CAD.
∴△ACD ∽ △BCE ② 由①知$\frac{AC}{BC}$ = $\frac{CD}{EC}$,∠ACD = ∠BCE,
∴∠ACB = ∠DCE.连接DE,由$\frac{AC}{CD}$ = $\frac{BC}{EC}$可得△ACB ∽ △DCE.
∴$\frac{AC}{CD}$ = $\frac{AB}{DE}$.
∵BE ⊥ BD,BE = BD,
∴DE = $\sqrt{2}$BD.
∴$\frac{AB·CD}{AC·BD}$ = $\frac{AB}{BD}$·$\frac{CD}{AC}$ = $\frac{AB}{BD}$·$\frac{DE}{AB}$ = $\frac{DE}{BD}$ = $\sqrt{2}$
查看更多完整答案,请扫码查看