2025年一遍过九年级初中数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一遍过九年级初中数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一遍过九年级初中数学上册北师大版》

1 [2023东营中考]如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE= 60°.若BD= 4DC,DE= 2.4,则AD的长为 (
3
)

A.1.8
B.2.4
C.3
D.3.2
答案: C $\because \triangle ABC$ 是等边三角形,$\therefore BC = AC$,$\angle B = \angle C = 60^{\circ}$,$\therefore \angle CAD + \angle ADC = 120^{\circ}$。$\because \angle ADE = 60^{\circ}$,$\therefore \angle BDE + \angle ADC = 120^{\circ}$,$\therefore \angle CAD = \angle BDE$,$\therefore \triangle ADC \backsim \triangle DEB$,$\therefore \frac{AD}{DE} = \frac{AC}{DB}$。由 $BD = 4DC$,可设 $DC = x$,则 $BD = 4x$,$\therefore BC = AC = 5x$,$\therefore \frac{AD}{2.4} = \frac{5x}{4x}$,$\therefore AD = 3$。
2 如图,在Rt△ABC中,∠ACB= 90°,D是边AB上一点,且CD= CA,BE⊥CD,交CD的延长线于点E.若$\frac{CD}{CE}= \frac{3}{5},BC= 9,$则BE的长为______
6
.
答案: 6 $\because \frac{CD}{CE} = \frac{3}{5}$,$\therefore$ 设 $CD = 3x$,$CE = 5x$,$\therefore DE = 2x$,$\therefore CA = CD = 3x$。$\because CD = CA$,$\therefore \angle A = \angle ADC$,$\because \angle ADC = \angle EDB$,$\therefore \angle A = \angle EDB$,$\because BE \perp CD$,$\therefore \angle ACB = \angle E = 90^{\circ}$,$\therefore \triangle ACB \backsim \triangle DEB$。$\therefore \frac{AC}{DE} = \frac{BC}{BE}$,$\therefore \frac{3x}{2x} = \frac{9}{BE}$,$\therefore BE = 6$。
3 [2024南京育英外国语学校月考]如图,在△ABC中,点D,E,G分别在边AB,AC,BC上,∠AED= ∠B,AG交线段DE于点F,且$\frac{AD}{AC}= \frac{DF}{CG}.(1)$求证:AG平分∠BAC.
证明:(1)
∵∠DAE + ∠AED + ∠ADE = 180°,∠BAC + ∠B + ∠C = 180°,∠AED = ∠B,∴∠ADE = ∠C,又 ∵AD/AC = DF/CG,∴△ADF∽△ACG,∴∠DAF = ∠CAG,∴AG平分∠BAC。

(2)求证$\frac{EF}{BG}= \frac{DF}{CG}.$
证明:(2)
∵∠AED = ∠B,∠EAF = ∠BAG,∴△AEF∽△ABG,∴EF/BG = AF/AG。由(1)知△ADF∽△ACG,∴DF/CG = AF/AG,∴EF/BG = DF/CG。

答案: 证明:
(1)$\because \angle DAE + \angle AED + \angle ADE = 180^{\circ}$,$\angle BAC + \angle B + \angle C = 180^{\circ}$,$\angle AED = \angle B$,$\therefore \angle ADE = \angle C$,又 $\because \frac{AD}{AC} = \frac{DF}{CG}$,$\therefore \triangle ADF \backsim \triangle ACG$,$\therefore \angle DAF = \angle CAG$,$\therefore AG$ 平分 $\angle BAC$。
(2)$\because \angle AED = \angle B$,$\angle EAF = \angle BAG$,$\therefore \triangle AEF \backsim \triangle ABG$,$\therefore \frac{EF}{BG} = \frac{AF}{AG}$。由
(1)知 $\triangle ADF \backsim \triangle ACG$,$\therefore \frac{DF}{CG} = \frac{AF}{AG}$,$\therefore \frac{EF}{BG} = \frac{DF}{CG}$。
4 如图,在菱形ABCD中,AB= AC,点E,F分别在边AB,BC上,且AE= BF,CE与AF相交于点G.
(1)求证:∠FGC= ∠B.
证明:
∵ 四边形 ABCD 为菱形,∴ AB = BC,又 ∵ AB = AC,∴ AB = BC = AC,∴ △ABC 为等边三角形,∴ ∠B = ∠BAC = 60°。在 △ABF 和 △CAE 中,$\left\{\begin{array}{l} AB = CA, \\ \angle B = \angle CAE, \\ BF = AE, \end{array}\right.$ ∴ △ABF ≌ △CAE,∴ ∠BAF = ∠ACE,∴ ∠FGC = ∠GAC + ∠ACG = ∠GAC + ∠BAF = ∠BAC = 60°,∴ ∠FGC = ∠B。

(2)延长CE与DA的延长线交于点H,求证:BE·CH= AF·AC.
证明:
∵ 四边形 ABCD 为菱形,∴ ∠B = ∠D,AD // BC,∴ ∠BCE = ∠H,∴ △BCE ∽ △DHC,∴ $\frac{BE}{DC} = \frac{CE}{HC}$。由(1)知 △ABF ≌ △CAE,∴ CE = AF。∵ CA = CB = CD,∴ $\frac{BE}{AC} = \frac{AF}{HC}$,∴ BE·CH = AF·AC。
答案: 证明:
(1)$\because$ 四边形 $ABCD$ 为菱形,$\therefore AB = BC$,又 $\because AB = AC$,$\therefore AB = BC = AC$,$\therefore \triangle ABC$ 为等边三角形,$\therefore \angle B = \angle BAC = 60^{\circ}$。在 $\triangle ABF$ 和 $\triangle CAE$ 中,$\left\{\begin{array}{l} AB = CA, \\ \angle B = \angle CAE, \\ BF = AE, \end{array}\right.$ $\therefore \triangle ABF \cong \triangle CAE$,$\therefore \angle BAF = \angle ACE$,$\therefore \angle FGC = \angle GAC + \angle ACG = \angle GAC + \angle BAF = \angle BAC = 60^{\circ}$,$\therefore \angle FGC = \angle B$。
(2)$\because$ 四边形 $ABCD$ 为菱形,$\therefore \angle B = \angle D$,$AD // BC$,$\therefore \angle BCE = \angle H$,$\therefore \triangle BCE \backsim \triangle DHC$,$\therefore \frac{BE}{DC} = \frac{CE}{HC}$。由
(1)知 $\triangle ABF \cong \triangle CAE$,$\therefore CE = AF$。$\because CA = CB = CD$,$\therefore \frac{BE}{AC} = \frac{AF}{HC}$,$\therefore BE \cdot CH = AF \cdot AC$。

查看更多完整答案,请扫码查看

关闭