第24页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
1 [2024济宁中考]如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE= 3,则菱形的边长为(

A.6
B.8
C.10
D.12
6
)A.6
B.8
C.10
D.12
答案:
A
∵四边形ABCD是菱形,
∴AC⊥BD,
∴△AOB是直角三角形.
∵E是AB的中点,
∴OE = $\frac{1}{2}$AB.
∵OE = 3,
∴AB = 6,即菱形的边长为6.
∵四边形ABCD是菱形,
∴AC⊥BD,
∴△AOB是直角三角形.
∵E是AB的中点,
∴OE = $\frac{1}{2}$AB.
∵OE = 3,
∴AB = 6,即菱形的边长为6.
2 [2024泸州中考]已知四边形ABCD是平行四边形,下列条件中,不能判定□ABCD为矩形的是(
A.$∠A= 90^{\circ }$
B.$∠B= ∠C$
C.AC= BD
D.AC⊥BD
D
)A.$∠A= 90^{\circ }$
B.$∠B= ∠C$
C.AC= BD
D.AC⊥BD
答案:
D
∵四边形ABCD是平行四边形,
∴当∠A = 90°时,平行四边形ABCD是矩形,故A项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,
∴AB//CD,
∴∠B + ∠C = 180°,当∠B = ∠C时,可得∠B = ∠C = 90°,此时▱ABCD为矩形,故B项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,当AC = BD时,平行四边形ABCD是矩形,故C项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,当AC⊥BD时,平行四边形ABCD是菱形,故D项不能判定▱ABCD为矩形.
∵四边形ABCD是平行四边形,
∴当∠A = 90°时,平行四边形ABCD是矩形,故A项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,
∴AB//CD,
∴∠B + ∠C = 180°,当∠B = ∠C时,可得∠B = ∠C = 90°,此时▱ABCD为矩形,故B项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,当AC = BD时,平行四边形ABCD是矩形,故C项可以判定▱ABCD为矩形;
∵四边形ABCD是平行四边形,当AC⊥BD时,平行四边形ABCD是菱形,故D项不能判定▱ABCD为矩形.
3 [新考法][2024甘肃中考]如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为(


A.2
B.3
C.$\sqrt {5}$
D.$2\sqrt {2}$
$\sqrt{5}$
)A.2
B.3
C.$\sqrt {5}$
D.$2\sqrt {2}$
答案:
C 结合题中图象,可得当x = 0时,PO = AO = 4,当点P运动到点B时,PO = BO = 2.在菱形ABCD中,AC⊥BD,
∴∠AOB = ∠BOC = 90°,
∴AB = BC = $\sqrt{OA^2 + OB^2}$ = 2$\sqrt{5}$,当点P运动到BC中点时,PO的长为$\frac{1}{2}$BC = $\sqrt{5}$.
∴∠AOB = ∠BOC = 90°,
∴AB = BC = $\sqrt{OA^2 + OB^2}$ = 2$\sqrt{5}$,当点P运动到BC中点时,PO的长为$\frac{1}{2}$BC = $\sqrt{5}$.
4 [2024东营中考]如图,四边形ABCD是矩形,直线EF分别交AD,BC,BD于点E,F,O,下列条件中,不能证明$△BOF\cong △DOE$的是(

A.O为矩形ABCD两条对角线的交点
B.EO= FO
C.AE= CF
D.EF⊥BD
D
)A.O为矩形ABCD两条对角线的交点
B.EO= FO
C.AE= CF
D.EF⊥BD
答案:
D
∵四边形ABCD是矩形,
∴AD = BC,AD//BC,
∴∠OBF = ∠ODE,∠OFB = ∠OED.对于A项,
∵O为矩形ABCD两条对角线的交点,
∴OB = OD,在△BOF和△DOE中,$\begin{cases} \angle OFB = \angle OED, \\ \angle OBF = \angle ODE, \\ OB = OD, \end{cases}$
∴△BOF≌△DOE(AAS),故A项不符合题意;对于B项,在△BOF和△DOE中,$\begin{cases} \angle OBF = \angle ODE, \\ \angle OFB = \angle OED, \\ FO = EO, \end{cases}$
∴△BOF≌△DOE(AAS),故B项不符合题意;对于C项,
∵AE = CF,
∴BC - CF = AD - AE,即BF = DE,在△BOF和△DOE中,$\begin{cases} \angle OBF = \angle ODE, \\ BF = DE, \\ \angle OFB = \angle OED, \end{cases}$
∴△BOF≌△DOE(ASA),故C项不符合题意;对于D项,
∵EF⊥BD,
∴∠BOF = ∠DOE = 90°,不能判定△BOF≌△DOE,故D项符合题意.
∵四边形ABCD是矩形,
∴AD = BC,AD//BC,
∴∠OBF = ∠ODE,∠OFB = ∠OED.对于A项,
∵O为矩形ABCD两条对角线的交点,
∴OB = OD,在△BOF和△DOE中,$\begin{cases} \angle OFB = \angle OED, \\ \angle OBF = \angle ODE, \\ OB = OD, \end{cases}$
∴△BOF≌△DOE(AAS),故A项不符合题意;对于B项,在△BOF和△DOE中,$\begin{cases} \angle OBF = \angle ODE, \\ \angle OFB = \angle OED, \\ FO = EO, \end{cases}$
∴△BOF≌△DOE(AAS),故B项不符合题意;对于C项,
∵AE = CF,
∴BC - CF = AD - AE,即BF = DE,在△BOF和△DOE中,$\begin{cases} \angle OBF = \angle ODE, \\ BF = DE, \\ \angle OFB = \angle OED, \end{cases}$
∴△BOF≌△DOE(ASA),故C项不符合题意;对于D项,
∵EF⊥BD,
∴∠BOF = ∠DOE = 90°,不能判定△BOF≌△DOE,故D项符合题意.
5 [2024重庆中考B卷]如图,在边长为4的正方形ABCD中,点E是BC上一点,点F是CD延长线上一点,连接AE,AF,AM平分$∠EAF$交CD于点M.若BE= DF= 1,则DM的长度为(

A.2
B.$\sqrt {5}$
C.$\sqrt {6}$
D.$\frac {12}{5}$
$\frac{12}{5}$
)A.2
B.$\sqrt {5}$
C.$\sqrt {6}$
D.$\frac {12}{5}$
答案:
D
∵四边形ABCD是正方形,
∴AB = AD,∠ABE = ∠ADF = 90°.在Rt△ABE和Rt△ADF中,$\begin{cases} AB = AD, \\ \angle ABE = \angle ADF, \\ BE = DF, \end{cases}$
∴Rt△ABE≌Rt△ADF(SAS),
∴AE = AF.
∵AM平分∠EAF,
∴∠EAM = ∠FAM.在△AEM和△AFM中,$\begin{cases} AE = AF, \\ \angle EAM = \angle FAM, \\ AM = AM, \end{cases}$
∴△AEM≌△AFM(SAS),
∴EM = FM.
∵四边形ABCD是正方形,
∴BC = CD = 4,∠BCD = 90°.设DM = x,则MC = CD - DM = 4 - x,CE = BC - BE = 4 - 1 = 3,EM = FM = FD + DM = 1 + x,在Rt△MCE中,EM² = MC² + CE²,即(1 + x)² = (4 - x)² + 3²,解得x = $\frac{12}{5}$.
∵四边形ABCD是正方形,
∴AB = AD,∠ABE = ∠ADF = 90°.在Rt△ABE和Rt△ADF中,$\begin{cases} AB = AD, \\ \angle ABE = \angle ADF, \\ BE = DF, \end{cases}$
∴Rt△ABE≌Rt△ADF(SAS),
∴AE = AF.
∵AM平分∠EAF,
∴∠EAM = ∠FAM.在△AEM和△AFM中,$\begin{cases} AE = AF, \\ \angle EAM = \angle FAM, \\ AM = AM, \end{cases}$
∴△AEM≌△AFM(SAS),
∴EM = FM.
∵四边形ABCD是正方形,
∴BC = CD = 4,∠BCD = 90°.设DM = x,则MC = CD - DM = 4 - x,CE = BC - BE = 4 - 1 = 3,EM = FM = FD + DM = 1 + x,在Rt△MCE中,EM² = MC² + CE²,即(1 + x)² = (4 - x)² + 3²,解得x = $\frac{12}{5}$.
6 [2024吉林中考]如图,正方形ABCD的对角线

AC,BD相交于点O,点E是OA的中点,点F是OD上一点,连接EF.若$∠FEO= 45^{\circ }$,则$\frac {EF}{BC}$的值为
AC,BD相交于点O,点E是OA的中点,点F是OD上一点,连接EF.若$∠FEO= 45^{\circ }$,则$\frac {EF}{BC}$的值为
$\frac{1}{2}$
.
答案:
$\frac{1}{2}$
∵四边形ABCD是正方形,
∴∠BAC = ∠DAC = 45°,AD = BC.
∵∠FEO = 45°,
∴∠FEO = ∠DAC,
∴EF//AD.
∵点E是OA的中点,
∴点F是OD的中点,
∴EF是△AOD的中位线,
∴EF = $\frac{1}{2}$AD,
∴EF = $\frac{1}{2}$BC,即$\frac{EF}{BC}$ = $\frac{1}{2}$.
∵四边形ABCD是正方形,
∴∠BAC = ∠DAC = 45°,AD = BC.
∵∠FEO = 45°,
∴∠FEO = ∠DAC,
∴EF//AD.
∵点E是OA的中点,
∴点F是OD的中点,
∴EF是△AOD的中位线,
∴EF = $\frac{1}{2}$AD,
∴EF = $\frac{1}{2}$BC,即$\frac{EF}{BC}$ = $\frac{1}{2}$.
7 [2024潍坊中考]如图,在矩形ABCD中,AB>2AD,点E,F分别在边AB,CD上.将$△ADF$沿AF折叠,点D的对应点G恰好落在对角线AC上;将$△CBE$沿CE折叠,点B的对应点H恰好也落在对角线AC上.连接GE,FH.
求证:(1)$△AEH\cong △CFG$;
(2)四边形EGFH为平行四边形.

证明:(1)∵四边形ABCD是矩形,
∴AD = BC,∠B = ∠D = 90°,AB//CD,∴∠EAH = ∠FCG;由折叠得AG = AD,CH = CB,∠CHE = ∠B = 90°,∠AGF = ∠D = 90°,∴CH = AG,∠AHE = ∠CGF = 90°,∴AH = CG.
在△AEH和△CFG中,$\begin{cases} \angle EAH = \angle FCG, \\ AH = CG, \\ \angle AHE = \angle CGF, \end{cases}$
∴△AEH≌△CFG(
(2)由(1)知∠AHE = ∠CGF = 90°,△AEH≌△CFG,
∴EH//FG,EH = FG,
∴四边形EGFH为平行四边形.
求证:(1)$△AEH\cong △CFG$;
(2)四边形EGFH为平行四边形.
证明:(1)∵四边形ABCD是矩形,
∴AD = BC,∠B = ∠D = 90°,AB//CD,∴∠EAH = ∠FCG;由折叠得AG = AD,CH = CB,∠CHE = ∠B = 90°,∠AGF = ∠D = 90°,∴CH = AG,∠AHE = ∠CGF = 90°,∴AH = CG.
在△AEH和△CFG中,$\begin{cases} \angle EAH = \angle FCG, \\ AH = CG, \\ \angle AHE = \angle CGF, \end{cases}$
∴△AEH≌△CFG(
ASA
).(2)由(1)知∠AHE = ∠CGF = 90°,△AEH≌△CFG,
∴EH//FG,EH = FG,
∴四边形EGFH为平行四边形.
答案:
证明:
(1)
∵四边形ABCD是矩形,
∴AD = BC,∠B = ∠D = 90°,AB//CD,
∴∠EAH = ∠FCG;由折叠得AG = AD,CH = CB,∠CHE = ∠B = 90°,∠AGF = ∠D = 90°,
∴CH = AG,∠AHE = ∠CGF = 90°,
∴AH = CG.
在△AEH和△CFG中,$\begin{cases} \angle EAH = \angle FCG, \\ AH = CG, \\ \angle AHE = \angle CGF, \end{cases}$
∴△AEH≌△CFG(ASA).
(2)由
(1)知∠AHE = ∠CGF = 90°,△AEH≌△CFG,
∴EH//FG,EH = FG,
∴四边形EGFH为平行四边形.
(1)
∵四边形ABCD是矩形,
∴AD = BC,∠B = ∠D = 90°,AB//CD,
∴∠EAH = ∠FCG;由折叠得AG = AD,CH = CB,∠CHE = ∠B = 90°,∠AGF = ∠D = 90°,
∴CH = AG,∠AHE = ∠CGF = 90°,
∴AH = CG.
在△AEH和△CFG中,$\begin{cases} \angle EAH = \angle FCG, \\ AH = CG, \\ \angle AHE = \angle CGF, \end{cases}$
∴△AEH≌△CFG(ASA).
(2)由
(1)知∠AHE = ∠CGF = 90°,△AEH≌△CFG,
∴EH//FG,EH = FG,
∴四边形EGFH为平行四边形.
8 [2024徐州中考]已知:如图,四边形ABCD为正方形,点E在BD的延长线上,连接EA,EC.
(1)求证:$△EAB\cong △ECB$.
证明:∵四边形ABCD为正方形,
∴AB = BC,∠ABE = ∠CBE = 45°.
在△EAB和△ECB中,$\begin{cases} AB = CB, \\ \angle ABE = \angle CBE, \\ BE = BE, \end{cases}$
∴△EAB≌△ECB(
(2)若$∠AEC= 45^{\circ }$,求证:DC= DE.
证明:∵四边形ABCD为正方形,
∴∠BDC = $\frac{1}{2}$∠CDA = 45°.
∵△EAB≌△ECB,∠AEC = 45°,
∴∠CED = ∠AED = $\frac{1}{2}$∠AEC =
∵∠BDC = ∠CED + ∠DCE = 45°,
∴∠DCE = 45° - 22.5° =
∴∠CED = ∠DCE,∴DC = DE.
(1)求证:$△EAB\cong △ECB$.
证明:∵四边形ABCD为正方形,
∴AB = BC,∠ABE = ∠CBE = 45°.
在△EAB和△ECB中,$\begin{cases} AB = CB, \\ \angle ABE = \angle CBE, \\ BE = BE, \end{cases}$
∴△EAB≌△ECB(
SAS
).(2)若$∠AEC= 45^{\circ }$,求证:DC= DE.
证明:∵四边形ABCD为正方形,
∴∠BDC = $\frac{1}{2}$∠CDA = 45°.
∵△EAB≌△ECB,∠AEC = 45°,
∴∠CED = ∠AED = $\frac{1}{2}$∠AEC =
22.5°
.∵∠BDC = ∠CED + ∠DCE = 45°,
∴∠DCE = 45° - 22.5° =
22.5°
,∴∠CED = ∠DCE,∴DC = DE.
答案:
证明:
(1)
∵四边形ABCD为正方形,
∴AB = BC,∠ABE = ∠CBE = 45°.
在△EAB和△ECB中,$\begin{cases} AB = CB, \\ \angle ABE = \angle CBE, \\ BE = BE, \end{cases}$
∴△EAB≌△ECB(SAS).
(2)
∵四边形ABCD为正方形,
∴∠BDC = $\frac{1}{2}$∠CDA = 45°.
∵△EAB≌△ECB,∠AEC = 45°,
∴∠CED = ∠AED = $\frac{1}{2}$∠AEC = 22.5°.
∵∠BDC = ∠CED + ∠DCE = 45°,
∴∠DCE = 45° - 22.5° = 22.5°,
∴∠CED = ∠DCE,
∴DC = DE.
(1)
∵四边形ABCD为正方形,
∴AB = BC,∠ABE = ∠CBE = 45°.
在△EAB和△ECB中,$\begin{cases} AB = CB, \\ \angle ABE = \angle CBE, \\ BE = BE, \end{cases}$
∴△EAB≌△ECB(SAS).
(2)
∵四边形ABCD为正方形,
∴∠BDC = $\frac{1}{2}$∠CDA = 45°.
∵△EAB≌△ECB,∠AEC = 45°,
∴∠CED = ∠AED = $\frac{1}{2}$∠AEC = 22.5°.
∵∠BDC = ∠CED + ∠DCE = 45°,
∴∠DCE = 45° - 22.5° = 22.5°,
∴∠CED = ∠DCE,
∴DC = DE.
查看更多完整答案,请扫码查看