第82页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
1 [2025陕西师大附中期中]如图,已知等腰三角形ABC中,$AB= AC= 20cm$,$BC= 30cm$,点P从点B出发沿BA以4cm/s的速度向点A运动;同时点Q从点C出发沿CB以3cm/s的速度向点B运动,在运动过程中,当$\triangle BPQ与\triangle AQC$相似时,$BP=$

$\frac{40}{9}$cm或20cm
.
答案:
$\frac{40}{9}$cm或20cm 设运动时间为xs,当△BPQ∽△CQA时,有$\frac{BP}{CQ} = \frac{BQ}{AC}$,即$\frac{4x}{3x} = \frac{30 - 3x}{20}$,解得$x = \frac{10}{9}$,
∴BP = 4x = $\frac{40}{9}$(cm);当△BPQ∽△CAQ时,有$\frac{BP}{AC} = \frac{BQ}{CQ}$,即$\frac{4x}{20} = \frac{30 - 3x}{3x}$,解得$x = 5$或$x = -10$(舍去),
∴BP = 4x = 20(cm)。综上,当BP = $\frac{40}{9}$cm或20cm时,△BPQ与△AQC相似。
∴BP = 4x = $\frac{40}{9}$(cm);当△BPQ∽△CAQ时,有$\frac{BP}{AC} = \frac{BQ}{CQ}$,即$\frac{4x}{20} = \frac{30 - 3x}{3x}$,解得$x = 5$或$x = -10$(舍去),
∴BP = 4x = 20(cm)。综上,当BP = $\frac{40}{9}$cm或20cm时,△BPQ与△AQC相似。
2 [2024威海期末]如图,$Rt\triangle ABC的两条直角边AB= 4cm$,$AC= 3cm$,点D沿AB从A向B运动,速度是1cm/s,同时,点E沿BC从B向C运动,速度为2cm/s.动点E到达点C时运动终止.连接DE,CD,AE.设动点运动时间为ts.

(1)当t的值为____时,$\triangle BDE与\triangle ABC$相似;
(2)在运动过程中,当$CD\perp DE$时,t的值为____.
(1)当t的值为____时,$\triangle BDE与\triangle ABC$相似;
(2)在运动过程中,当$CD\perp DE$时,t的值为____.
答案:
(1)$\frac{20}{13}$或$\frac{8}{7}$;
(2)$\frac{2}{13}$ 由题意知BC = 5cm,AD = tcm,BD = (4 - t)cm,BE = 2tcm,CE = (5 - 2t)cm且$0 \leq t \leq \frac{5}{2}$。
(1)当∠BDE = ∠BAC,即ED⊥AB时,Rt△BDE∽Rt△BAC,
∴BD:BA = BE:BC,即(4 - t):4 = 2t:5,
∴$t = \frac{20}{13}$;当∠BED = ∠BAC,即DE⊥BC时,Rt△BDE∽Rt△BCA,
∴BD:BC = BE:BA,即(4 - t):5 = 2t:4,
∴$t = \frac{8}{7}$。所以当动点运动$\frac{20}{13}$s或$\frac{8}{7}$s时,△BDE与△ABC相似。
(2)如图,过点E作EF⊥AB于点F,由∠BFE = ∠BAC = 90°,∠B = ∠B,得△BFE∽△BAC,
∴$\frac{BF}{BA} = \frac{EF}{CA} = \frac{BE}{BC}$,即$\frac{BF}{4} = \frac{EF}{3} = \frac{2t}{5}$,
∴BF = $\frac{8t}{5}$cm,EF = $\frac{6t}{5}$cm,
∴DF = AB - AD - BF = 4 - t - $\frac{8t}{5}$ = (4 - $\frac{13}{5}t$)(cm),
∵CD⊥DE,
∴∠CDE = 90°,
∴∠ADC + ∠FDE = 90°,
∵∠BAC = 90°,
∴∠ADC + ∠ACD = 90°,
∴∠ACD = ∠FDE,
∵∠CAD = ∠DFE = 90°,
∴Rt△ACD∽Rt△FDE,
∴AC:FD = AD:FE,即3:(4 - $\frac{13}{5}t$) = t:$\frac{6t}{5}$,
∴$t = \frac{2}{13}$。
(1)$\frac{20}{13}$或$\frac{8}{7}$;
(2)$\frac{2}{13}$ 由题意知BC = 5cm,AD = tcm,BD = (4 - t)cm,BE = 2tcm,CE = (5 - 2t)cm且$0 \leq t \leq \frac{5}{2}$。
(1)当∠BDE = ∠BAC,即ED⊥AB时,Rt△BDE∽Rt△BAC,
∴BD:BA = BE:BC,即(4 - t):4 = 2t:5,
∴$t = \frac{20}{13}$;当∠BED = ∠BAC,即DE⊥BC时,Rt△BDE∽Rt△BCA,
∴BD:BC = BE:BA,即(4 - t):5 = 2t:4,
∴$t = \frac{8}{7}$。所以当动点运动$\frac{20}{13}$s或$\frac{8}{7}$s时,△BDE与△ABC相似。
(2)如图,过点E作EF⊥AB于点F,由∠BFE = ∠BAC = 90°,∠B = ∠B,得△BFE∽△BAC,
∴$\frac{BF}{BA} = \frac{EF}{CA} = \frac{BE}{BC}$,即$\frac{BF}{4} = \frac{EF}{3} = \frac{2t}{5}$,
∴BF = $\frac{8t}{5}$cm,EF = $\frac{6t}{5}$cm,
∴DF = AB - AD - BF = 4 - t - $\frac{8t}{5}$ = (4 - $\frac{13}{5}t$)(cm),
∵CD⊥DE,
∴∠CDE = 90°,
∴∠ADC + ∠FDE = 90°,
∵∠BAC = 90°,
∴∠ADC + ∠ACD = 90°,
∴∠ACD = ∠FDE,
∵∠CAD = ∠DFE = 90°,
∴Rt△ACD∽Rt△FDE,
∴AC:FD = AD:FE,即3:(4 - $\frac{13}{5}t$) = t:$\frac{6t}{5}$,
∴$t = \frac{2}{13}$。
3 [2024眉山中考]如图,菱形ABCD的边长为6,$\angle BAD= 120^{\circ}$,过点D作$DE\perp BC$,交BC的延长线于点E,连接AE分别交BD,CD于点F,G,则FG的长为

$\frac{4\sqrt{7}}{5}$
.
答案:
$\frac{4\sqrt{7}}{5}$
∵菱形ABCD的边长为6,∠BAD = 120°,
∴AD = BC = CD = 6,AD//BC,∠BCD = 120°,
∴∠DCE = 60°,
∵DE⊥BC,
∴∠DEC = 90°,在Rt△DCE中,∠CDE = 90° - ∠DCE = 30°,
∴CE = $\frac{1}{2}$CD = 3,
∴DE = $\sqrt{CD^{2} - CE^{2}}$ = $3\sqrt{3}$,
∴BE = BC + CE = 9。
∵AD//BE,
∴∠ADE = 180° - ∠DEC = 90°。在Rt△ADE中,AE = $\sqrt{DE^{2} + AD^{2}}$ = $\sqrt{(3\sqrt{3})^{2} + 6^{2}}$ = $3\sqrt{7}$。由AD//BE,易得△AFD∽△EFB,
∴$\frac{AF}{EF} = \frac{AD}{EB} = \frac{6}{9} = \frac{2}{3}$,
∴AF = $\frac{2}{5}$AE = $\frac{2}{5} \times 3\sqrt{7} = \frac{6}{5}\sqrt{7}$。由AD//CE,易得△AGD∽△EGC,
∴$\frac{AG}{EG} = \frac{AD}{EC} = \frac{6}{3} = 2$,
∴AG = $\frac{2}{3}$AE = $\frac{2}{3} \times 3\sqrt{7} = 2\sqrt{7}$,
∴FG = AG - AF = $2\sqrt{7} - \frac{6}{5}\sqrt{7} = \frac{4\sqrt{7}}{5}$。
∵菱形ABCD的边长为6,∠BAD = 120°,
∴AD = BC = CD = 6,AD//BC,∠BCD = 120°,
∴∠DCE = 60°,
∵DE⊥BC,
∴∠DEC = 90°,在Rt△DCE中,∠CDE = 90° - ∠DCE = 30°,
∴CE = $\frac{1}{2}$CD = 3,
∴DE = $\sqrt{CD^{2} - CE^{2}}$ = $3\sqrt{3}$,
∴BE = BC + CE = 9。
∵AD//BE,
∴∠ADE = 180° - ∠DEC = 90°。在Rt△ADE中,AE = $\sqrt{DE^{2} + AD^{2}}$ = $\sqrt{(3\sqrt{3})^{2} + 6^{2}}$ = $3\sqrt{7}$。由AD//BE,易得△AFD∽△EFB,
∴$\frac{AF}{EF} = \frac{AD}{EB} = \frac{6}{9} = \frac{2}{3}$,
∴AF = $\frac{2}{5}$AE = $\frac{2}{5} \times 3\sqrt{7} = \frac{6}{5}\sqrt{7}$。由AD//CE,易得△AGD∽△EGC,
∴$\frac{AG}{EG} = \frac{AD}{EC} = \frac{6}{3} = 2$,
∴AG = $\frac{2}{3}$AE = $\frac{2}{3} \times 3\sqrt{7} = 2\sqrt{7}$,
∴FG = AG - AF = $2\sqrt{7} - \frac{6}{5}\sqrt{7} = \frac{4\sqrt{7}}{5}$。
4 [2025合肥包河区期中]如图,正方形ABCD中,对角线AC,BD相交于点O,E为CD边的中点,连接AE并延长交BC的延长线于点F,交BD于点M,连接OF交CD于点N,连接MN.
(1)求证:$FN= 2ON$.
(2)求证:$\frac{DM}{OC}= \frac{DN}{BC}$.
(3)若$AB= 4$,则MN的长为____.

(1)求证:$FN= 2ON$.
(2)求证:$\frac{DM}{OC}= \frac{DN}{BC}$.
(3)若$AB= 4$,则MN的长为____.
答案:
(1)证明:如图,连接OE,
∵四边形ABCD是正方形,对角线AC,BD相交于点O,E为CD边的中点,
∴AO = CO,DE = CE,AD//BC,
∴∠DAE = ∠CFE,在△DAE和△CFE中,∠DAE = ∠CFE,∠AED = ∠FEC,DE = CE,
∴△DAE≌△CFE(AAS),
∴AE = FE,
∴OE//CF,OE = $\frac{1}{2}$FC,易得△EON∽△CFN,
∴$\frac{ON}{FN} = \frac{OE}{FC} = \frac{1}{2}$,
∴FN = 2ON。
(2)证明:由
(1)得△DAE≌△CFE,
∴FC = AD,
∵BC = AD,
∴FB = 2AD。由AD//FB,易得△ADM∽△FBM,
∴$\frac{AM}{FM} = \frac{AD}{FB} = \frac{1}{2}$,
∴FM = 2AM,
∴$\frac{FM}{FA} = \frac{2AM}{2AM + AM} = \frac{2}{3}$,
∵$\frac{FN}{FO} = \frac{2ON}{2ON + ON} = \frac{2}{3}$,
∴$\frac{FM}{FA} = \frac{FN}{FO}$,又
∵∠MFN = ∠AFO,
∴△MFN∽△AFO,
∴∠FMN = ∠FAO,
∴MN//AO,
∴MN//OC,易得△DMN∽△DOC,
∴$\frac{DM}{DO} = \frac{DN}{DC}$。又
∵DC = BC,DO = OC,
∴$\frac{DM}{OC} = \frac{DN}{BC}$。
(3)$\frac{4\sqrt{2}}{3}$
∵AB = BC = 4,∠ABC = 90°,
∴AC = $\sqrt{AB^{2} + BC^{2}}$ = $\sqrt{4^{2} + 4^{2}}$ = $4\sqrt{2}$,
∴AO = $\frac{1}{2}$AC = $2\sqrt{2}$。
∵△MFN∽△AFO,
∴$\frac{MN}{AO} = \frac{FM}{FA} = \frac{2}{3}$,
∴MN = $\frac{2}{3}$AO = $\frac{2}{3} \times 2\sqrt{2} = \frac{4\sqrt{2}}{3}$,
∴MN的长为$\frac{4\sqrt{2}}{3}$。
(1)证明:如图,连接OE,
∵四边形ABCD是正方形,对角线AC,BD相交于点O,E为CD边的中点,
∴AO = CO,DE = CE,AD//BC,
∴∠DAE = ∠CFE,在△DAE和△CFE中,∠DAE = ∠CFE,∠AED = ∠FEC,DE = CE,
∴△DAE≌△CFE(AAS),
∴AE = FE,
∴OE//CF,OE = $\frac{1}{2}$FC,易得△EON∽△CFN,
∴$\frac{ON}{FN} = \frac{OE}{FC} = \frac{1}{2}$,
∴FN = 2ON。
(2)证明:由
(1)得△DAE≌△CFE,
∴FC = AD,
∵BC = AD,
∴FB = 2AD。由AD//FB,易得△ADM∽△FBM,
∴$\frac{AM}{FM} = \frac{AD}{FB} = \frac{1}{2}$,
∴FM = 2AM,
∴$\frac{FM}{FA} = \frac{2AM}{2AM + AM} = \frac{2}{3}$,
∵$\frac{FN}{FO} = \frac{2ON}{2ON + ON} = \frac{2}{3}$,
∴$\frac{FM}{FA} = \frac{FN}{FO}$,又
∵∠MFN = ∠AFO,
∴△MFN∽△AFO,
∴∠FMN = ∠FAO,
∴MN//AO,
∴MN//OC,易得△DMN∽△DOC,
∴$\frac{DM}{DO} = \frac{DN}{DC}$。又
∵DC = BC,DO = OC,
∴$\frac{DM}{OC} = \frac{DN}{BC}$。
(3)$\frac{4\sqrt{2}}{3}$
∵AB = BC = 4,∠ABC = 90°,
∴AC = $\sqrt{AB^{2} + BC^{2}}$ = $\sqrt{4^{2} + 4^{2}}$ = $4\sqrt{2}$,
∴AO = $\frac{1}{2}$AC = $2\sqrt{2}$。
∵△MFN∽△AFO,
∴$\frac{MN}{AO} = \frac{FM}{FA} = \frac{2}{3}$,
∴MN = $\frac{2}{3}$AO = $\frac{2}{3} \times 2\sqrt{2} = \frac{4\sqrt{2}}{3}$,
∴MN的长为$\frac{4\sqrt{2}}{3}$。
查看更多完整答案,请扫码查看