第79页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
1 [2024陕西师大附中期中]如图,添加以下哪个条件,仍不能直接证明△ABC与△ADE相似? (

A. ∠B = ∠ADE
B. ∠C = ∠AED
C. $\frac{AC}{AE}= \frac{AB}{AD}$
D. $\frac{AC}{AE}= \frac{BC}{DE}$
D
)A. ∠B = ∠ADE
B. ∠C = ∠AED
C. $\frac{AC}{AE}= \frac{AB}{AD}$
D. $\frac{AC}{AE}= \frac{BC}{DE}$
答案:
D A项,由两角分别相等的两个三角形相似,可判定$\triangle ABC$与$\triangle ADE$相似,A项不符合题意;B项,由两角分别相等的两个三角形相似,可判定$\triangle ABC$与$\triangle ADE$相似,B项不符合题意;C项,由两边成比例且夹角相等的两个三角形相似,可判定$\triangle ABC$与$\triangle ADE$相似,C项不符合题意。
2 [一题多解][2024贵港覃塘区期中]如图,在Rt△ABC中,∠ACB = 90°,AC = 6,BC = 12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF = EG,则CD的长为______.
答案:
4 解法一 如图1,过点D作$DM\perp BC$交AB于点M,易证$DC = DM$,设$CD = x$,则$DM = x$,由$\angle MDB=\angle ACB = 90^{\circ}$,$\angle B=\angle B$,得$\triangle BDM\backsim\triangle BCA$,所以$\frac{BD}{BC}=\frac{DM}{CA}$,即$\frac{12 - x}{12}=\frac{x}{6}$,解得$x = 4$。
相似三角形的常见模型

解法二 如图2,延长FE,交AB于点N,易得$Rt\triangle ENG\backsim Rt\triangle CBA$,$\therefore EN:EG = CB:CA = 12:6 = 2:1$,又$\because EF = EG$,$\therefore EN:EF = 2:1$。由题中条件易得$\triangle AEN\backsim\triangle ADB$,$\triangle AEF\backsim\triangle ADC$,$\therefore EN:BD = AE:AD$,$EF:CD = AE:AD$,$\therefore EN:BD = EF:CD$,$\therefore BD:CD = EN:EF = 2:1$,$\therefore CD=\frac{1}{3}BC=\frac{1}{3}×12 = 4$。
4 解法一 如图1,过点D作$DM\perp BC$交AB于点M,易证$DC = DM$,设$CD = x$,则$DM = x$,由$\angle MDB=\angle ACB = 90^{\circ}$,$\angle B=\angle B$,得$\triangle BDM\backsim\triangle BCA$,所以$\frac{BD}{BC}=\frac{DM}{CA}$,即$\frac{12 - x}{12}=\frac{x}{6}$,解得$x = 4$。
相似三角形的常见模型
解法二 如图2,延长FE,交AB于点N,易得$Rt\triangle ENG\backsim Rt\triangle CBA$,$\therefore EN:EG = CB:CA = 12:6 = 2:1$,又$\because EF = EG$,$\therefore EN:EF = 2:1$。由题中条件易得$\triangle AEN\backsim\triangle ADB$,$\triangle AEF\backsim\triangle ADC$,$\therefore EN:BD = AE:AD$,$EF:CD = AE:AD$,$\therefore EN:BD = EF:CD$,$\therefore BD:CD = EN:EF = 2:1$,$\therefore CD=\frac{1}{3}BC=\frac{1}{3}×12 = 4$。
3 [2025无锡期末]如图,在△ABC中,点D,E分别在BC,AC边上,且AD = AB,∠DEC = ∠B.
(1)求证:△AED∽△ADC.
证明:$\because AD = AB$,$\therefore\angle ADB=\angle B$,$\because\angle DEC=\angle B$,$\therefore\angle DEC=\angle ADB$,又$\because\angle DEC+\angle AED = 180^{\circ}$,$\angle ADB+\angle ADC = 180^{\circ}$,$\therefore\angle AED=\angle ADC$,又$\because\angle EAD=\angle DAC$,$\therefore\triangle AED\backsim\triangle ADC$。
(2)若AB = 2,EC = 3,求AC的长.
解:由(1)可知,$\triangle AED\backsim\triangle ADC$,$\therefore\frac{AE}{AD}=\frac{AD}{AC}$,$\because AB = AD = 2$,$CE = 3$,$\therefore\frac{AC - 3}{2}=\frac{2}{AC}$,解得$AC = 4$或$-1$(不合题意,舍去),$\therefore AC$的长为
(1)求证:△AED∽△ADC.
证明:$\because AD = AB$,$\therefore\angle ADB=\angle B$,$\because\angle DEC=\angle B$,$\therefore\angle DEC=\angle ADB$,又$\because\angle DEC+\angle AED = 180^{\circ}$,$\angle ADB+\angle ADC = 180^{\circ}$,$\therefore\angle AED=\angle ADC$,又$\because\angle EAD=\angle DAC$,$\therefore\triangle AED\backsim\triangle ADC$。
(2)若AB = 2,EC = 3,求AC的长.
解:由(1)可知,$\triangle AED\backsim\triangle ADC$,$\therefore\frac{AE}{AD}=\frac{AD}{AC}$,$\because AB = AD = 2$,$CE = 3$,$\therefore\frac{AC - 3}{2}=\frac{2}{AC}$,解得$AC = 4$或$-1$(不合题意,舍去),$\therefore AC$的长为
4
。
答案:
(1)证明:$\because AD = AB$,$\therefore\angle ADB=\angle B$,$\because\angle DEC=\angle B$,$\therefore\angle DEC=\angle ADB$,又$\because\angle DEC+\angle AED = 180^{\circ}$,$\angle ADB+\angle ADC = 180^{\circ}$,$\therefore\angle AED=\angle ADC$,又$\because\angle EAD=\angle DAC$,$\therefore\triangle AED\backsim\triangle ADC$。
(2)解:由
(1)可知,$\triangle AED\backsim\triangle ADC$,$\therefore\frac{AE}{AD}=\frac{AD}{AC}$,$\because AB = AD = 2$,$CE = 3$,$\therefore\frac{AC - 3}{2}=\frac{2}{AC}$,解得$AC = 4$或$-1$(不合题意,舍去),$\therefore AC$的长为4。
(1)证明:$\because AD = AB$,$\therefore\angle ADB=\angle B$,$\because\angle DEC=\angle B$,$\therefore\angle DEC=\angle ADB$,又$\because\angle DEC+\angle AED = 180^{\circ}$,$\angle ADB+\angle ADC = 180^{\circ}$,$\therefore\angle AED=\angle ADC$,又$\because\angle EAD=\angle DAC$,$\therefore\triangle AED\backsim\triangle ADC$。
(2)解:由
(1)可知,$\triangle AED\backsim\triangle ADC$,$\therefore\frac{AE}{AD}=\frac{AD}{AC}$,$\because AB = AD = 2$,$CE = 3$,$\therefore\frac{AC - 3}{2}=\frac{2}{AC}$,解得$AC = 4$或$-1$(不合题意,舍去),$\therefore AC$的长为4。
4 如图,∠BAC = 90°,AD⊥BC于点D,AE = EC,ED的延长线交AB的延长线于点F.求证:$\frac{AB}{AC}= \frac{DF}{AF}$.

证明:
证明:
$\because AD\perp BC$,$\therefore\angle ADC = 90^{\circ}$。$\because AE = CE$,$\therefore DE$是$Rt\triangle ACD$斜边上的中线,$\therefore DE = CE$,$\therefore\angle C=\angle EDC$,又$\because\angle BDF=\angle EDC$,$\therefore\angle BDF=\angle C$。$\because\angle BAD+\angle ABD = 90^{\circ}$,$\angle C+\angle ABD = 90^{\circ}$,$\therefore\angle BAD=\angle C$,$\therefore\angle BDF=\angle BAD$,又$\because\angle F=\angle F$,$\therefore\triangle DBF\backsim\triangle ADF$,$\therefore\frac{BD}{AD}=\frac{DF}{AF}$。$\because\angle ADB=\angle CDA = 90^{\circ}$,$\angle BAD=\angle C$,$\therefore\triangle ABD\backsim\triangle CAD$,$\therefore\frac{AB}{AC}=\frac{BD}{AD}$,$\therefore\frac{AB}{AC}=\frac{DF}{AF}$。
答案:
证明:$\because AD\perp BC$,$\therefore\angle ADC = 90^{\circ}$。$\because AE = CE$,$\therefore DE$是$Rt\triangle ACD$斜边上的中线,$\therefore DE = CE$,$\therefore\angle C=\angle EDC$,又$\because\angle BDF=\angle EDC$,$\therefore\angle BDF=\angle C$。$\because\angle BAD+\angle ABD = 90^{\circ}$,$\angle C+\angle ABD = 90^{\circ}$,$\therefore\angle BAD=\angle C$,$\therefore\angle BDF=\angle BAD$,又$\because\angle F=\angle F$,$\therefore\triangle DBF\backsim\triangle ADF$,$\therefore\frac{BD}{AD}=\frac{DF}{AF}$。$\because\angle ADB=\angle CDA = 90^{\circ}$,$\angle BAD=\angle C$,$\therefore\triangle ABD\backsim\triangle CAD$,$\therefore\frac{AB}{AC}=\frac{BD}{AD}$,$\therefore\frac{AB}{AC}=\frac{DF}{AF}$。
查看更多完整答案,请扫码查看