2025年同步精练广东人民出版社七年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年同步精练广东人民出版社七年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年同步精练广东人民出版社七年级数学下册北师大版》

1. 下列各图中,过直线 $l$ 外的点 $P$ 画直线 $l$ 的垂线,三角尺操作正确的是 ( )
答案: C
2. 如图所示,在平面内过 $A$ 点作已知直线 $m$ 的垂线,可作垂线的条数是 ( )


A. 0 条
B. 1 条
C. 2 条
D. 无数条
答案: B
3.(2024 深圳期末)下列图形中,线段 $AD$ 的长表示点 $A$ 到直线 $BC$ 的距离的是 ( )
答案: D
4. 如图所示,在灌溉时,要把河水引到农田 $P$ 处,为保证渠道最短,挖渠的位置这样确定:过点 $P$ 作 $PQ\perp AB$ 于点 $Q$,垂线段 $PQ$ 即为渠道的位置,其中的数学依据是 ____________________。

答案: 垂线段最短
例 1 直线 $AB$,$CD$ 相交于点 $O$,$\angle AOC$ 是钝角,在 $\angle AOC$ 的内部作射线 $OE$,$EO\perp AB$。
(1)根据已知条件画出图形;
(2)若 $\angle COE = 60^{\circ}$,求 $\angle BOD$ 的度数。
答案:
解:
(1)根据已知条件画出图形,如图所示(画法不唯一,合理即可)。 
(2)因为直线AB,CD相交于点O,所以∠COD = 180°。 因为EO⊥AB,所以∠BOE = 90°。 因为∠COE = 60°, 所以∠BOC = ∠BOE - ∠COE = 90° - 60° = 30°, 所以∠BOD = ∠COD - ∠BOC = 180° - 30° = 150°。
2. 已知 $\angle AOB = 22.5^{\circ}$,分别以射线 $OA$,$OB$ 为始边,在 $\angle AOB$ 的外部作 $\angle AOC = \angle AOB$,$\angle BOD = 2\angle AOB$,则 $OC$ 与 $OD$ 的位置关系是 ______________。
答案: 垂直或重合
例 2 如图所示,$P$ 是直线 $l$ 外一点,$A$,$B$,$C$ 三点在直线 $l$ 上,且 $PB\perp l$ 于点 $B$,$\angle APC = 90^{\circ}$,则下列结论:

①线段 $AP$ 是点 $A$ 到直线 $PC$ 的距离;
②线段 $BP$ 的长是点 $P$ 到直线 $l$ 的距离;
③ $PA$,$PB$,$PC$ 三条线段中,$PB$ 最短;
④点 $C$ 到直线 $AP$ 的垂线段是线段 $PC$。
其中,正确的是 ( )
A. ②③④ B. ①②③
C. ③④ D. ①②③④
答案: A

查看更多完整答案,请扫码查看

关闭