第17页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
1 计算$x^{4}÷x$的结果正确的是(
A.$x^{4}$
B.$x^{3}$
C.$x^{2}$
D.$x$
B
)A.$x^{4}$
B.$x^{3}$
C.$x^{2}$
D.$x$
答案:
B $x^{4}÷ x=x^{4 - 1}$(指数相减)$=x^{3}$.
2 $(-a^{6})÷(-a)^{2}$的运算结果是(
A.$a^{4}$
B.$-a^{4}$
C.$a^{3}$
D.$-a^{3}$
[变式] 计算:$-a^{10}÷(-a)^{5}·(-a)^{5}= $
B
)A.$a^{4}$
B.$-a^{4}$
C.$a^{3}$
D.$-a^{3}$
[变式] 计算:$-a^{10}÷(-a)^{5}·(-a)^{5}= $
$-a^{10}$
.
答案:
B $(-a^{6})÷ (-a)^{2}=-a^{6}÷ a^{2}=-(a^{6}÷ a^{2})=-a^{4}$.
@@$-a^{10}$ $-a^{10}÷ (-a)^{5}\cdot (-a)^{5}=-a^{10}÷ a^{5}\cdot a^{5}=-a^{10 - 5 + 5}=-a^{10}$.
@@$-a^{10}$ $-a^{10}÷ (-a)^{5}\cdot (-a)^{5}=-a^{10}÷ a^{5}\cdot a^{5}=-a^{10 - 5 + 5}=-a^{10}$.
3 计算$(a^{3})^{2}÷a^{2}$的结果是(
A.$a^{3}$
B.$a^{4}$
C.$a^{7}$
D.$a^{8}$
B
)A.$a^{3}$
B.$a^{4}$
C.$a^{7}$
D.$a^{8}$
答案:
B $(a^{3})^{2}÷ a^{2}=a^{3× 2}÷ a^{2}=a^{6 - 2}=a^{4}$.
4 [2024 山西中考]下列运算正确的是(
A.$2m + n = 2mn$
B.$m^{6}÷m^{2}= m^{3}$
C.$(-mn)^{2}= -m^{2}n^{2}$
D.$m^{2}·m^{3}= m^{5}$
D
)A.$2m + n = 2mn$
B.$m^{6}÷m^{2}= m^{3}$
C.$(-mn)^{2}= -m^{2}n^{2}$
D.$m^{2}·m^{3}= m^{5}$
答案:
D A选项,2m和n不是同类项,不能合并;B选项,$m^{6}÷ m^{2}=m^{4}$;C选项,$(-mn)^{2}=m^{2}n^{2}$.
5 [2025 杭州期末]$2025^{5}是2025^{4}$的(
A.5 倍
B.2025 倍
C.$\dfrac{5}{4}$倍
D.1 倍
B
)A.5 倍
B.2025 倍
C.$\dfrac{5}{4}$倍
D.1 倍
答案:
B $2025^{5}÷ 2025^{4}=2025$倍.
6 若$(x^{2})^{3}÷x^{m}= x^{4}$,则$m=$
[变式] 若$a^{9}÷a^{x - 2}= (-a)^{6}$,则$x$的值为
2
.[变式] 若$a^{9}÷a^{x - 2}= (-a)^{6}$,则$x$的值为
5
.
答案:
2 $\because (x^{2})^{3}÷ x^{m}=x^{4}$,$\therefore x^{6}÷ x^{m}=x^{6 - m}=x^{4}$,$\therefore 6 - m = 4$,$\therefore m = 2$.
@@5 $\because a^{9}÷ a^{x - 2}=(-a)^{6}=a^{6}$,$\therefore 9 - (x - 2)=6$,$\therefore x = 5$.
@@5 $\because a^{9}÷ a^{x - 2}=(-a)^{6}=a^{6}$,$\therefore 9 - (x - 2)=6$,$\therefore x = 5$.
7 已知$x - y = 2$,则$2^{x}÷2^{y}= $
4
.
答案:
4 $\because x - y = 2$,$\therefore 2^{x}÷ 2^{y}=2^{x - y}=2^{2}=4$.
8 计算:(1)$a^{5}= a^{10}÷$
(2)$x^{14}÷(x^{10}÷x^{2})= $
$a^{5}$
$=$______$a^{8}$
$÷a^{3}$;(2)$x^{14}÷(x^{10}÷x^{2})= $
$x^{6}$
.
答案:
(1)$a^{5}$ $a^{8}$;
(2)$x^{6}$
(2)$x^{14}÷ (x^{10}÷ x^{2})=x^{14}÷ x^{8}=x^{6}$.
(1)$a^{5}$ $a^{8}$;
(2)$x^{6}$
(2)$x^{14}÷ (x^{10}÷ x^{2})=x^{14}÷ x^{8}=x^{6}$.
9 [2025 武汉期末]若$x^{a}= 3$,$x^{b}= 5$,则$x^{a + b}$的值是
15
,$x^{2a - b}$的值是$\frac{9}{5}$
.
答案:
15 $\frac{9}{5}$ $x^{a + b}=x^{a}\cdot x^{b}=3× 5 = 15$,$x^{2a - b}=(x^{a})^{2}÷ x^{b}=3^{2}÷ 5=\frac{9}{5}$.
10 [一题多解][2025 上海期末]计算:$8^{6}×(-\dfrac{1}{2})^{17}$.
答案:
解:通解 $8^{6}× (-\frac{1}{2})^{17}=8^{6}× (-\frac{1}{2^{17}})=-8^{6}× \frac{1}{2^{17}}=-\frac{8^{6}}{2^{17}}=-\frac{262144}{131072}=-2$.优解1(同底数幂的除法)$8^{6}× (-\frac{1}{2})^{17}=(2^{3})^{6}× (-\frac{1}{2^{17}})=2^{18}× (-\frac{1}{2^{17}})=-\frac{2^{18}}{2^{17}}=-2$.优解2(积的乘方的运算法则的逆用)$8^{6}× (-\frac{1}{2})^{17}=8^{6}× (-\frac{1}{2})^{6}× (-\frac{1}{2})^{6}× (-\frac{1}{2})^{5}=8^{6}× (\frac{1}{2})^{6}× (\frac{1}{2})^{6}× (-\frac{1}{2})^{5}=(8× \frac{1}{2}× \frac{1}{2})^{6}× (-\frac{1}{2})^{5}=2^{6}× (-\frac{1}{2})^{5}=2× 2^{5}× (-\frac{1}{2})^{5}=2× (-\frac{1}{2}× 2)^{5}=2× (-1)=-2$.优解3(幂的乘方与积的乘方的运算法则的逆用)$8^{6}× (-\frac{1}{2})^{17}=(2^{3})^{6}× (-\frac{1}{2})^{17}=2^{18}× (-\frac{1}{2})^{17}=2^{17}× (-\frac{1}{2})^{17}× 2=(-2× \frac{1}{2})^{17}× 2=(-1)× 2=-2$.
11 [一题多解][2025 吉林五中期中]若$2a - 3b + c - 2 = 0$,求$16^{a}÷8^{2b}×4^{c}$的值.
答案:
解:通解1 $\because 2a - 3b + c - 2 = 0$,$\therefore 2a - 3b + c = 2$,$\therefore (2^{4})^{a}÷ (2^{3})^{2b}× (2^{2})^{c}=2^{4a}÷ 2^{6b}× 2^{2c}=2^{4a - 6b + 2c}=2^{2(2a - 3b + c)}=2^{2× 2}=2^{4}=16$.通解2 $\because 2a - 3b + c - 2 = 0$,$\therefore 2a - 3b + c = 2$,$\therefore 16^{a}÷ 8^{2b}× 4^{c}=4^{2a}÷ 64^{b}× 4^{c}=4^{2a}÷ 4^{3b}× 4^{c}=4^{2a - 3b + c}=4^{2}=16$.
12 [2025 常德期末]若$5^{m}= 3$,$25^{n}= 4$,求$5^{3m - 4n}$的值.
[变式] 已知$4^{m}= 5$,$8^{n}= 3$,$3^{m}= 4$.
(1)求$2^{2m + 3n}$的值;
(2)求$2^{4m - 6n}$的值;
(3)[一题多解]求$12^{2m}$的值.
[变式] 已知$4^{m}= 5$,$8^{n}= 3$,$3^{m}= 4$.
(1)求$2^{2m + 3n}$的值;
(2)求$2^{4m - 6n}$的值;
(3)[一题多解]求$12^{2m}$的值.
答案:
解:$\because 5^{m}=3$,$25^{n}=4$,$\therefore (5^{2})^{n}=5^{2n}=4$,$\therefore 5^{3m - 4n}=5^{3m}÷ 5^{4n}=(5^{m})^{3}÷ (5^{2n})^{2}=3^{3}÷ 4^{2}=\frac{27}{16}$.
@@解:
(1)$\because 4^{m}=2^{2m}=5$,$8^{n}=2^{3n}=3$,$3^{m}=4$,$\therefore 2^{2m + 3n}=2^{2m}\cdot 2^{3n}=5× 3 = 15$.
(2)$2^{4m - 6n}=2^{4m}÷ 2^{6n}=(2^{2m})^{2}÷ (2^{3n})^{2}=5^{2}÷ 3^{2}=\frac{25}{9}$.
(3)通解1 $12^{2m}=(3× 4)^{2m}=3^{2m}× 4^{2m}=(3^{m})^{2}× (4^{m})^{2}=4^{2}× 5^{2}=16× 25 = 400$.通解2 $12^{2m}=[(3× 4)^{m}]^{2}=(3^{m}× 4^{m})^{2}=(4× 5)^{2}=20^{2}=400$.
@@解:
(1)$\because 4^{m}=2^{2m}=5$,$8^{n}=2^{3n}=3$,$3^{m}=4$,$\therefore 2^{2m + 3n}=2^{2m}\cdot 2^{3n}=5× 3 = 15$.
(2)$2^{4m - 6n}=2^{4m}÷ 2^{6n}=(2^{2m})^{2}÷ (2^{3n})^{2}=5^{2}÷ 3^{2}=\frac{25}{9}$.
(3)通解1 $12^{2m}=(3× 4)^{2m}=3^{2m}× 4^{2m}=(3^{m})^{2}× (4^{m})^{2}=4^{2}× 5^{2}=16× 25 = 400$.通解2 $12^{2m}=[(3× 4)^{m}]^{2}=(3^{m}× 4^{m})^{2}=(4× 5)^{2}=20^{2}=400$.
13 已知$25^{a}·5^{2b}= 5^{6}$,$4^{b}÷4^{c}= 4$,求代数式$a + 2b - c$的值.
答案:
解:$\because 25^{a}\cdot 5^{2b}=5^{6}$,$4^{b}÷ 4^{c}=4$,$\therefore 5^{2a}\cdot 5^{2b}=5^{6}$,$4^{b - c}=4$,$\therefore 2a + 2b = 6$,$b - c = 1$,$\therefore a + b = 3$,$\therefore a + 2b - c = a + b + b - c = 3 + 1 = 4$.
查看更多完整答案,请扫码查看