2025年综合应用创新题典中点九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点九年级数学上册北师大版》

13. (12分)如图,点$B$,$C分别在\triangle ADE的边AD$,$AE$上,且$AC = 3$,$AB = 2.5$,$EC = 2$,$DB = 3.5$.求证:$\triangle ABC\backsim\triangle AED$.

[证明]∵AC = 3,AB = 2.5,EC = 2,DB = 3.5,
  ∴AE =
5
,AD =
6
.
  ∴$\frac{AC}{AD}$ = $\frac{3}{6}$ = $\frac{1}{2}$,$\frac{AB}{AE}$ = $\frac{2.5}{5}$ = $\frac{1}{2}$.
  ∴$\frac{AC}{AD}$ = $\frac{AB}{AE}$.
  又∵∠A = ∠A,∴△ABC∽△AED.
答案: [证明]
∵AC = 3,AB = 2.5,EC = 2,DB = 3.5,
 
∴AE = 5,AD = 6.
 
∴$\frac{AC}{AD}$ = $\frac{3}{6}$ = $\frac{1}{2}$,$\frac{AB}{AE}$ = $\frac{2.5}{5}$ = $\frac{1}{2}$.
 
∴$\frac{AC}{AD}$ = $\frac{AB}{AE}$.
  又
∵∠A = ∠A,
∴△ABC∽△AED.
14. (12分)[2023潍坊]如图,在$\triangle ABC$中,$CD平分\angle ACB$,$AE\perp CD$,垂足为点$E$,过点$E作EF// BC$,交$AC于点F$,$G为BC$的中点,连接$FG$.求证:$FG= \frac{1}{2}AB$.

[证明]延长AE交BC于点H.
  ∵CD平分∠ACB,AE⊥CD,
  ∴∠ACE = ∠HCE,∠AEC = ∠HEC = 90°.
  又∵CE = CE,
  ∴△ACE≌△HCE(
ASA
).
  ∴AE = EH = $\frac{1}{2}$AH.
  ∵EF//BC,∴∠AEF = ∠AHC,∠AFE = ∠ACH.
  ∴△AEF∽△AHC.
  ∴$\frac{AF}{AC}$ = $\frac{AE}{AH}$ = $\frac{1}{2}$.∴AC = 2AF.
  ∴F是AC的中点.
  又∵G是BC的中点,∴FG是△ABC的
中位线
.
  ∴FG = $\frac{1}{2}$AB.
答案: [证明]延长AE交BC于点H.
 
∵CD平分∠ACB,AE⊥CD,
 
∴∠ACE = ∠HCE,∠AEC = ∠HEC = 90°.
  又
∵CE = CE,
 
∴△ACE≌△HCE(ASA).
 
∴AE = EH = $\frac{1}{2}$AH.
 
∵EF//BC,
∴∠AEF = ∠AHC,∠AFE = ∠ACH.
 
∴△AEF∽△AHC.
 
∴$\frac{AF}{AC}$ = $\frac{AE}{AH}$ = $\frac{1}{2}$.
∴AC = 2AF.
 
∴F是AC的中点.
  又
∵G是BC的中点,
∴FG是△ABC的中位线.
 
∴FG = $\frac{1}{2}$AB.
15. (12分)[2024云南大学附中月考]如图,在平行四边形$ABCD$中,连接对角线$AC$,延长$AB至点E$,使$BE = AB$,连接$DE$,分别交$BC$,$AC于点F$,$G$.
(1)求证:$BF = CF$;
(2)若$BC = 6$,$DG = 4$,求$FG$的长.

(1)[证明]∵四边形ABCD是平行四边形,
  ∴AD//BC,AD = BC.
  ∴∠EBF = ∠EAD.
  又∵∠BEF = ∠AED,∴△EBF∽△EAD.
  ∴$\frac{BF}{AD}$ = $\frac{EB}{EA}$ = $\frac{1}{2}$.
  ∴BF = $\frac{1}{2}$AD = $\frac{1}{2}$BC.
  ∴BF = CF.
(2)[解]由(1)知AD//BC,AD = BC = 6,
 ∴∠FCG = ∠DAG.
 又∵∠FGC = ∠DGA,∴△FGC∽△DGA.
 ∴$\frac{FG}{DG}$ = $\frac{FC}{AD}$.
 ∵FC = $\frac{1}{2}$BC = 3,∴$\frac{FG}{4}$ = $\frac{3}{6}$,解得FG =
2
.
答案:
(1)[证明]
∵四边形ABCD是平行四边形,
 
∴AD//BC,AD = BC.
 
∴∠EBF = ∠EAD.
  又
∵∠BEF = ∠AED,
∴△EBF∽△EAD.
 
∴$\frac{BF}{AD}$ = $\frac{EB}{EA}$ = $\frac{1}{2}$.
 
∴BF = $\frac{1}{2}$AD = $\frac{1}{2}$BC.
 
∴BF = CF.
(2)[解]由
(1)知AD//BC,AD = BC = 6,
∴∠FCG = ∠DAG.
 又
∵∠FGC = ∠DGA,
∴△FGC∽△DGA.
∴$\frac{FG}{DG}$ = $\frac{FC}{AD}$.
∵FC = $\frac{1}{2}$BC = 3,
∴$\frac{FG}{4}$ = $\frac{3}{6}$,解得FG = 2.
16. (12分)如图,在矩形$ABCD$中,$AB = 8$,$AD = 4$,点$E是DC$边上的任一点(不包括端点$D$,$C$),过点$A作AF\perp AE交CB的延长线于点F$,设$DE = a$.
(1)求$BF$的长(用含$a$的代数式表示);
(2)连接$EF交AB于点G$,连接$GC$.当$GC// AE$时,求证:四边形$AGCE$是菱形.
答案:

(1)[解]
∵四边形ABCD是矩形,
 
∴∠ADE = ∠ABC = ∠BAD = 90°.
 
∴∠ABF = 90° = ∠ADE,∠DAE + ∠BAE = 90°.
 
∵AF⊥AE,
∴∠BAF + ∠BAE = 90°.
 
∴∠DAE = ∠BAF.
 
∴△ADE∽△ABF.
 
∴$\frac{AD}{AB}$ = $\frac{DE}{BF}$,即$\frac{4}{8}$ = $\frac{a}{BF}$,解得BF = 2a.
(2)[证明]
∵四边形ABCD是矩形,
 
∴CD = AB = 8,BC = AD = 4,AG//CE,∠BCD = 90°.
 又
∵GC//AE,
∴四边形AGCE是平行四边形.
 
∴AG = CE = 8 - a.
 
∴BG = AB - AG = 8 - (8 - a) = a.
 在Rt△BGF中,$GF^{2}$ = $a^{2}$ + $(2a)^{2}$ = $5a^{2}$.
 在Rt△CEF中,$EF^{2}$ = $(2a + 4)^{2}$ + $(8 - a)^{2}$ = $5a^{2}$ + 80.
 在Rt△ADE中,$AE^{2}$ = $4^{2}$ + $a^{2}$ = 16 + $a^{2}$.
 如图,过点G作GM⊥AF于点M,
 则GM//AE,
 
∴易得△MGF∽△AEF.
∴$\frac{GM}{AE}$ = $\frac{GF}{EF}$.
 
∴$\frac{GM^{2}}{AE^{2}}$ = $\frac{GF^{2}}{EF^{2}}$,即$\frac{GM^{2}}{16 + a^{2}}$ = $\frac{5a^{2}}{5a^{2} + 80}$.
 
∴GM = a.
 
∴GM = BG.
 又
∵GM⊥AF,GB⊥FC,
∴FG是∠AFB的平分线.
 又
∵AE⊥AF,EC⊥FC,
∴EA = EC.
∴四边形AGCE是菱形.
                  

查看更多完整答案,请扫码查看

关闭