2025年课堂专题导学精练七年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课堂专题导学精练七年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课堂专题导学精练七年级数学下册人教版》

1. 求角
(1)如图①,直线AB、CD相交于点O,$\angle AOC:\angle BOC = 2:3$,则$\angle BOD = $______$^{\circ}$;
(2)如图②,$DE // BC$,$\angle D:\angle DBC = = 2:1$,$\angle 1 = \angle 2$,求$\angle E$的度数.
$\begin{array}{cc}图① & 图② \\\begin{array}{c}\begin{tikzpicture}\draw (0,0) -- (2,0) node[right] {B};\draw (0,0) -- (-2,0) node[left] {A};\draw (0,0) -- (0,-2) node[below] {D};\draw (0,0) -- (1,1) node[above] {C};\node at (-0.5,0.5) {O};\end{tikzpicture}\end{array} &\begin{array}{c}\begin{tikzpicture}\draw (0,0) -- (3,0) node[right] {C};\draw (0,0) -- (1,1) node[above] {B};\draw (1,1) -- (3,1) node[above] {E};\draw (3,1) -- (2,0) node[right] {D};\node at (1.5,0.5) {1};\node at (2.5,0.5) {2};\end{tikzpicture}\end{array}\end{array}$
答案:
(1)72
(2)$30^{\circ}$
解析:
(1)设$\angle AOC = 2k$,$\angle BOC = 3k$,$2k + 3k = 180^{\circ}$,$k = 36^{\circ}$,$\angle BOD = \angle AOC = 72^{\circ}$。
(2)设$\angle DBC = x$,$\angle D = 2x$,$DE // BC$得$\angle D + \angle DBC = 180^{\circ}$,$3x = 180^{\circ}$,$x = 60^{\circ}$,$\angle 1 = \angle 2 = 30^{\circ}$,$\angle E = \angle 1 = 30^{\circ}$。
3. (1)如图①,$AB // CD$,$\angle 2:\angle 1 = 3:2$,$\angle B = 130^{\circ}$,则$\angle A = $______$^{\circ}$;
(2)如图②,直线AC、EF相交于点O,OD是$\angle AOB$的平分线,OE在$\angle BOC$内,$\angle BOE = \dfrac{1}{2}\angle EOC$,$\angle DOE = 72^{\circ}$,求$\angle AOF$的度数.
$\begin{array}{cc}图① & 图② \\\begin{array}{c}\begin{tikzpicture}\draw (0,1) -- (3,1) node[right] {B};\draw (0,0) -- (3,0) node[right] {A};\draw (1,1) -- (1,0) node[left] {1};\draw (2,1) -- (2,0) node[right] {2};\end{tikzpicture}\end{array} &\begin{array}{c}\begin{tikzpicture}\draw (-2,0) -- (2,0) node[right] {C};\draw (0,-1) -- (0,2) node[above] {E};\draw (-1,-1) -- (1,2) node[above] {F};\draw (-1,2) -- (1,-1) node[below] {D};\node at (0,0) {O};\end{tikzpicture}\end{array}\end{array}$
答案:
(1)72
(2)$36^{\circ}$
解析:
(1)设$\angle 1 = 2k$,$\angle 2 = 3k$,$AB // CD$得$\angle 1 + \angle 2 = 180^{\circ}$,$k = 36^{\circ}$,$\angle 1 = 72^{\circ}$,$\angle A = \angle 1 = 72^{\circ}$。
(2)设$\angle BOE = x$,$\angle EOC = 2x$,$\angle BOC = 3x$,$\angle AOB = 180^{\circ} - 3x$,OD平分$\angle AOB$得$\angle BOD = \dfrac{180^{\circ} - 3x}{2}$,$\angle DOE = \angle BOD + x = 72^{\circ}$,解得$x = 36^{\circ}$,$\angle AOF = \angle EOC = 72^{\circ} - 36^{\circ} = 36^{\circ}$。

查看更多完整答案,请扫码查看

关闭